
- •1.Органикалық қосылыстардың жіктелуі.
- •1.Массаалмасу аппараттары. Насадкалы ректификациялық колонна және оның негізгі элементтері. Насадкалардың түрлері.
- •1.Парафиндер. Жалпы сипаттамасы. Төменгі және жоғарғы парафиндер. Төменгі парафиндердің бөліну технологиясы.
- •1.Мұнайды ұңғылар басында тасымалдауға және өңдеуге дайындау. Мұнайларды сусыздандыру және тұзсыздандыру процестерінің теориялық негіздері мен технологиясы.
- •2.Алкандар. Изомерлері. Номенклатурасы. Физикалық қасиеттері.
- •Изомерлері
- •2.Массаалмасу аппараттары. Клапанды табақшалы ректификациялық колонна және оның негізгі элементтері, жұмыс істеу принципі.
- •2.Олефиндердің жалпы сипаттамасы. Төменгі және жоғарғы олефиндер. Көмірсутегі атомдары бірдей олефиндермен парафиндердің айырмашылықтары.
- •2.Мұнай эмульсияларының түрі мен оларды ыдырату әдістері.
- •3.Алкендер. Изомерлері. Номенклатурасы. Алыну тәсілдері.
- •Изомерлері
- •3.Массаалмасу аппараттары. Қалпақшалы табақты ректификациялық колонна және оның негізгі элементтері, жұмыс істеу принципі.
- •3 Парафиндерді изомерлеу процесінің маңызы және жалпы сипаттамасы. Процестің катализаторлары мен температурасы.
- •3 Мұнай және мұнайөнімдерінің физико-химиялық қасиеттері (Мұнай мен мұнайөнімдерінің компонентік құрамдарын, қаныққан буларының қысымдарын, критикалық параметрлерін анықтау.)
- •4 Алкандардың химиялық қасиеттері.
- •Нитрлеу реакциясы.
- •Тотығу реакциясы.
- •Крекинг реакциясы.
- •4.Массаалмасу аппараттары. Қалпақсыз табақты ректификациялық колонна және оның негізгі элементтері, жұмыс істеу принципі.
- •4 Ароматты көмірсутектерді алудың басты әдістері. Пиролиз өнімдері - ароматты көмірсутектердің негізгі көзі.
- •4 Мұнай мен мұнайөнімдерінің жылулық қасиеттерін анықтау (энтальпия, жылусиымдылык, жану жылуы).
- •5 Алкиндер. Изомерлері. Номенклатурасы. Ацетилен алу. Алкиндердің химиялық қасиеттері.
- •5.Жылу аппараттары. Қапталған құбырлы (кожухтрубчатый) жылу алмастырғыш, олардың түрлері және жұмыс істеу принципі.
- •5 Жоғары парафиндер. Жоғары парафиндерді бөліп алу әдістері және технологиясы.
- •5 Мұнайды біріншілік өңдеудің негізгі өнеркәсіптік қондырғылары (мұнайды біріншілік өңдеудің комбинирленген қондырғысы – элоу-авт-екіншілік айдау).
- •6.Алкадиендер. Изопрен мен дивинилдің алыну жолдары. Диендердің физикалық және химиялық қасиеттері.
- •6.Ауамен салқындатқындатылатын жылуалмастырғыш. Конструкциялық ерекшеліктері және олардың қолданылу аймақтары.
- •6.Олефиндерді алудың технологиялық жолдары (термиялық, каталитикалық, парафиндерді дегидрлеу).
- •6.Мұнайды біріншілік өңдеу өнімдері.
- •7.Алкендердің химиялық қасиеттері.
- •7.«Құбыр ішіндегі құбыр» жылу алмастырғыштары. Конструкциялық ерекшеліктері және құбырларды бекіту түрлері. Оларды қолдану аймақтары.
- •7.Риформинг процесінің маңызы мен жалпы сипаттамасы.
- •7.Тауарлық мұнайөнімдерінің сипаттамасы. Отынның негізгі қасиеттері (бензиндердің, реактивті және дизелді отындардың).
- •8.Алифатты қатардың көмірсутектерінің галоген туындылары.
- •8.Псевдосұйытылған катализатор қабаты бар каталитикалық крекинг процесінің реакторы. Оның жұмыс істеу принципі және конструкциялық элементтері.
- •8 Ацетилен алу процесінің жалпы сипаттамасы. Ацетиленді кальций карбидінен алу.
- •9. Біратомды қаныққан спирттер. Изомерлері, номенклатурасы. Біріншілік, екіншілік, және үшіншілік спирттер туралы түсінік. Алынуы. Физикалық қасиеттері.
- •9.Псевдосұйытылған катализатор қабаты бар каталитикалық крекинг процесінің регенераторы. Оның жұмыс істеу принципі және конструкциялық элементтері.
- •9. Ацетилен алу процесінің жалпы сипаттамасы. Пиролиз газдарының құрамы және оларды бөлу әдістері.
- •9. Көмірсутекті шикізаттарды екіншілік өңдеу процесстері. Олардың жіктелуі. Термиялық деструктивті процесстер.
- •10.Алифатты қатары спирттерінің химиялық қасиеттері. Біріншілік, екіншілік, және үшіншілік спирттердің химиялық ерекшеліктері..
- •10.Циркуляциялық қабатты катализаторы бар каталитикалық крекинг реакторы. Оның жұмыс істеу принципі және конструкциялық элементтері.
- •10.Синтез-газ алу процесінің жалпы сипаттамасы. Көмірсутектердің каталитикалық конверциясы.
- •10.Көмірсутекті шикізатты байытудың каталитикалық гидрогендеу процесінің технологиясы.
- •4. Дизельдік отынды гидротазалаудың принципті технологиялық кескіні
- •11.Алифатты қатардың альдегидтері мен кетондары.
- •11.Циркуляциялық қабатты катализаторы бар каталитикалық крекинг регенераторы. Оның жұмыс істеу принципі және конструкциялық элементтері.
- •11.Көмірсутектерді каталитикалық конверциялау арқылы синтез- газ алу. Катализаторлары, процестің температурасы, оларға қойылатын талаптар.
- •11.Каталитикалық крекинг процесінің технологиясы мен теориялық негіздері.
- •12.Алифатты қатардың альдегидтері мен кетондарының химиялық қасиеттері.
- •12.Каталитикалық риформинг қондырғысының реакторы. Оның қолданылу аймақтары және конструкциялық элементтері.
- •12.Тотығу процесінің маңызы және жалпы сипаттамасы. Тотығудың қазіргі органикалық синтездегі алатын орны.
- •12.Каталитикалық риформинг процесінің технологиясы мен теориялық негіздері.
- •13.Бірнегізді қаныққан карбон қышкылдары. Изомерлері. Номенклатурасы. Қышқылдарды алу тәсілдері, физикалық және химиялық қасиеттері.
- •13.Дизель отынын гидротазалау реакторы. Оның жұмыс істеу принципі және конструкциялық элементтері.
- •13.Хлорлау процесінің маңызы және жалпы сипаттамасы.
- •13.Бутан-бутилен фракциясының каталитикалық алкилдеу процесінің технологиясы.
- •14.Бірнегізді қанықпаған карбон қышкылдары және олардың туындылары Химиялық қасиеттері және қолданылуы.
- •14.Құбырлы пештердегі отынды жағуға арналған форсункалар. Олардың құрылысы және жұмыс істеу принциптері.
- •14.Сұйық фазалы хлорлау технологиясы, процестің жағдайлары және реакторлардың түрлері.
- •14.Пентан-гександы фракциясының каталитикалық изомерлену процесінің технологиясы.
- •15.Алифатты қатардың нитроқосылыстары. Изомерлері, номенклатурасы, алыну тәсілдері, физикалық және химиялық қасиеттері.
- •Изомерлері мен аталуы.
- •Алу әдістері.
- •Химиялық қасиеттері.
- •15.Жалынсыз құбырлы пештер. Қабырға панелінің конструкциялық ерекшелігі. Пештің конструкциялық элементтері.
- •15.Радикалды – тізбекті тотығу процесінің жалпы сипаттамасы. Тотығу өнімдері.
- •15.Каталитикалық гидрокрекинг процесінің технологиясы.
- •16.Алифатты қатардың аминдері. Изомерлері, номенклатурасы. Алифатты аминдердің алыну тәсілдері, физикалық және химиялық қасиеттері.
- •Алыну жолдары.
- •16.Күкіртқышқылымен алкилдеу қондырғысының жазықты және тік түріндегі контакторлары. Олардың жұмыс істеу принципі және конструкциялық элементтері.
- •16.Гидроформилдеу процесінің маңызы және жалпы сипаттамасы. 263(520)
- •16.Тығыздығы жоғары полиэтилен өндірісі.
- •Изомерлері. Бір негізді оксиқышқылдардың гомологтық қатары оксиқұмырсқа немесе көмір қышқылынан басталады. Одан
- •Алу әдістері.
- •Физикалық қасиеттері.
- •Химиялық қасиеттері.
- •17.Құбырлы пештер. Олардың жіктелуі және қолдану аймақтары. Екі камералы, екі жағы да құламалы (двухскатные) пештер.
- •17.Сұйық фазалы хлорлаудың технологиялық сатылары.
- •17.Тығыздығы орташа полиэтилен өндірісі.
- •18.Көпатомды спирттер. Физикалық және химиялық қасиеттері.
- •18.Құбырлы пештер. Тік құрылымды құбырлы пеш. Пештердің негізгі элементтері мен гарнитурасы.
- •18.Тотығу реакциялары және олардың жіктелуі (көмірсутек тізбегі үзілмей тотығу, деструктивті тотығу, тотығу конденсациясы, толық тотығу).
- •18.Тығыздығы төмен полиэтилен өндірісі.
- •19.Көмірсулар. Жіктелуі. Моносахаридтердің физикалық және химиялық қасиеттері.
- •Моноқанттарды алу әдістері.
- •Физикалық қасиеттері.
- •Химиялық қасиеттері.
- •19.Массаалмасу процестеріндегі абсорберлер мен десорберлер. Олардың жұмыс істеу принципі және конструкциялық элементтері.
- •19.Тотығу процесінің тотықтырғыш агенттері, оларға қойылатын талаптар, активтілігі және селективтілігі.
- •19.Полистирол алу технологиясы. Полимер қасиетіне технологиялық процесс параметрлерінің әсері.
- •20.Циклоалкандар. Изомерлері. Алыну тәсілдері, физикалық және химиялық қасиеттері.
- •20.Экстракторлар. Негізгі конструкциялық элементтері.
- •20.Өндірістік оксосинтез процесінің технологиясы.
- •20.Полиизобутилен. Технологиясының ерекшеліктері.
- •21.Алифатты қатардың амин қышқылдары. Номенклатурасы. Физикалық және химиялық қасиеттері.
- •21.Химиялық процестердің негізгі реакторлары. Адиабаттық реакторлар, Олардың жұмыс істеу принципі және конструкциялық ерекшеліктері.
- •21.Бензолды алкилдеу процесінің технологиялық сызбанұсқасы және жағдайлары.
- •21.Поливинилхлорид өндірісінің процесін технологиялық жабдықтау мен қондырғылары. Пвх негізіндегі пластмассалар
- •22.Ароматтық көмірсутектер. Бензолдың гомологтық қатары. Изомерлері мен номенклатурасы. Алыну тәсілдері, физикалық және химиялық қасиеттері.
- •22.Химиялық процестердің негізгі реакторлары. Құбырлы реакторлар. Олардың құрылысынң негізгі конструкциялық элементтері.
- •22.Олефиндердің тура гидратациясы, этанол өндірісі.
- •22.Стиролдың сополимерлері. Акрилонитрилдің, бутадиеннің және стиролдың үшкомпонентті сополимерлері.
- •23.Бензолды ядросындағы орынбасу ережелері. I және II текті орынбасарлар.
- •23.Полимерлеу процестерге арналған реакциялық аппараттар. Араластырғышы бар реакциялық қазандар. Олардың негізгі бөлшектері.
- •23.Алкилдеу процесінің сипаттамалары. Алкилдеуші агенттер және катализаторлар.
- •23.Поликонденсация реакциясының жалпы ерекшеліктері. Поликонденсация процесінің сипаттамасы.
- •24.Ароматты көмірсутектердің галоген- және сульфотуындылары. Алыну тәсілдері, химиялық қасиеттері және қолданылуы.
- •24.Жылуалмастырғыш аппаратары. Қатаң бекітілген қапталған құбырлы жылуалмастырғыш. Оның негізгі болшектері жұмыс істеу принциптері.
- •24.Винилдеу процесінің сипаттамасы, ацетиленнен және сірке қышқылынан винилацетат алу.
- •24.Фенол-альдегидті полимерлер. Новолакты және резолды олигомерлер мен полимерлердің түзілу механизмі.
- •25.Фенолдар мен ароматты спирттер. Изомериясы және номенклатурасы. Алыну тәсілдері, физикалық және химиялық қасиеттері.
- •25.Полимерлеу процестеріндегі «идеалды ығыстыру» аппараттары. Колонна түрдегі және құбырлы реакторлардың конструкциялық ерекшеліктері.
- •25.Сульфирлеу процесінің сипаттамасы. Ароматты қосылыстарды сульфирлеу процесінің технологиясы мен талаптары, химизмі.
- •25.Новолакты фенол-формальдегидті шайыр өндірісі процесінің кескіні (үздіксіз әдіс).
- •26.Ароматты нитроқосылыстар. Изомериясы және номенклатурасы. Алыну тәсілдері, физикалық және химиялық қасиеттері.
- •26.Жылуалмастырғыш аппаратары. Негізгі органикалық синтездегі тоңазытқыштар мен конденсаторлар. Олардың негізгі конструкциялық элементтері.
- •26.Новолакты фенол-формальдегидті шайыр өндірісі процесінің кескіні (үздікті әдіс).
- •27.Ароматты аминдер. Изомериясы және номенклатурасы. Алыну тәсілдері, физикалық және химиялық қасиеттері.
- •27.Жылуалмастырғыш аппаратары. Булы кеңістікті қыздырғыштар. Қолданылу аймақтары, негізгі конструкциялық элементтері.
- •27.Изобутиленді формальдегидпен конденсациялау арқылы изопрен өндіру. Конденсация процесінің температурасы, қысымы және катализаторлары.
- •27.Полигексаметиленадипамид өндірісінің процесінің технологиялық кескіні.
- •28.Гетероциклды қосылыстар. Бес- және алты мүшелі гетероциклды қосылыстар. Алынуы, химиялық қасиеттері, оргсинтезде қолданылуы.
- •28.Мұнайхимиялық өндірістегі кристализаторлар. Олардың жұмыс істеу принципі және конструкциялық элементтері.
- •28.Стирол өндірісінің шикізаттары мен өнеркәсіптік әдістері.
- •28.Термопластарды өңдеу. Термопластар өңдеудің әдістерін жіктеу.
- •29.Конденсирленген және конденсирленбеген ароматтық қосылыстар. Алынуы. Химиялық қасиеттері.
- •29.Қапталған құбырлы (кожухтрубчатый) жылу алмастырғыш. Құбыры u- тәрізді жылуалмастырғыш, оның жұмыс істеу принципі.
- •29.Этилбензолды дегидрлеу арқылы стирол өндіру. Дегидрлеу процесінің температурасы, қысымы және катализаторлары.
- •29.Қысыммен құю. Процестің негізгі заңдылықтары.
- •30.Диазо- және азоқосылыстар. Диазоттау реакциясы. Азоқосылыстар дың химиялық қасиеттері. Азотты бөле және бөлмей жүретін химиялық реакциялар.
- •30.Қатты отындардың шығу тегі және олардың жалпы сипаттамасы.
- •30.Эластомерлер өңделуі. Техникалық каучук пен резиналы қоспалардың ингредиенттері.
14.Бірнегізді қанықпаған карбон қышкылдары және олардың туындылары Химиялық қасиеттері және қолданылуы.
Бұл қышқылдардың қаныққан қышқылдардан айырмашылығы карбоксил тобымен байланысқан радикалдың құрамында қанықпаған қос байланыс болуында.
Мысалы ретінде акрил немесе метакрил қышқылын алсақ болады.
CH2=CH(COOH) акрил қышқылы
CH2=C(CH3)(COOH) метакрил қышқылы
CH3-CH=CH-COOH кротонқышқылы
Химиялыққасиеттеріқаныққанкарбон қышқылдардыңқасиетіне ұқсас, тек бұлар радикалдық полимерлену реакциясына қатысады.
Акрилқышқылы
Өнеркәсіптемынадайсхемабойыншаалады:
CH≡CH+HCN→CH2=CH-CN+2HOH→NH3+CH2=CH-COOH
Техникада акрил қышқылының туындылары - оның эфирлері, әсіресе, метилакрилат деп аталатын, метил эфирі қолданылады. Ол эфирді өнеркәсіптік мөлшерде этиленциангидриннен немесе акрилонитрилден алынады.
CH2=CH-CN+HOH+CH3OH→CH2=CH-CO-O-CH3+NH3
Метилметакрилат оңай полимерленеді, нәтижесінде шыны тәріздес мөлдір зат(органикалық шыны) түзіледі. Сондықтан ол органикалық шыны және басқа да бағалы полимерлер өндірістерінде қолданылады.
Қанықпаған бір негізді карбон қышқылдары
Акрилқышқылы(CH2-CH(COOH))
Метакрилқышқылы(CH2=C(CH3)(COOH))
Олеинқышқылы
С17Н33СООНБұлқышқылпальмитинжәнестеаринқышқылдарқатарындамайлартүзеді.
Олеинқышқылынақанықпағанқышқылдардыңқасиетітән: бромсуыменараластырыпшайқасабромсуытүссізденеді. Сол сияқты калий марганцовкасымен араластырса она да түссіздендіреді.
олеин қышқылы
(цис- изомер)
эландин қышқылы
(транс- изомер)
Екі еселенген байланысты жерінен сутек қосылса олеин қышқылы қатты күйдегі стеарин қышқылына айналады. Олеин қышқылының сілті тұздары - олеинді сабындар, техникада жүнді жуу үшін қолданылады.
14.Құбырлы пештердегі отынды жағуға арналған форсункалар. Олардың құрылысы және жұмыс істеу принциптері.
На рис. VI1-1 показана схема однокамерной радиантно-конвекционной печи. Внутренний объем печи разделен полуперегородкой — перевальной стеной на две части, называемые радиантной и конвекционной камерами. В этих камерах размещены трубные змеевики, через поверхности которых осуществляется теплопередача.
Под радиационной теплопередачей понимают поглощение лучистого тепла, под конвективной — теплопередачу путем омывания поверхностей труб дымовыми газами. В радиантной камере основное количество тепла передается радиацией и лишь незначительное — конвекцией, а в конвекционной камере — наоборот.
Жидкое и газообразное топливо сжигается в радиантной камере. Продукты сгорания (дымовые газы), переваливаясь через перевальную стену, проходят конвекционную камеру' и уходят в дымовую трубу. Нагреваемый поток сначала проходит по трубам змеевиков конвекционной камеры, затем — радиантной камеры.
В результате сжигания топлива в печи повышается температура дымовых газов и светящегося факела, представляющего собой раскаленные частицы горячего топлива. Нагревшись до 1300—1600 °С, факел излучает тепло. Тепловые лучи падают на наружные поверхноститруб и внутренние поверхности стен радиантной камеры печи. Нагретые поверхности стен, в свою очередь, излучают тепло, которое также поглощается поверхностями радиантных труб. Если не учитывать потери через кладку стен, то при нормальной установившейся работе печи внутренние поверхности стен печи излучают столько тепла, сколько поглощают.
Трехатомные газы, содержащиеся в дымовых газах (водянойпар, двуокись углерода и сернистый ангидрид), также поглощаюти излучают лучистую энергию в определенных интервалах длин волн.
Количество лучистого тепла, поглощаемого в радиантной камере, зависит от поверхности факела, его конфигурации и степени экранирования топки. Большая поверхность факелов способствует повышению эффективности прямой передачи тепла поверхностям труб. Увеличение поверхности кладки также способствует возрастанию эффективности передачи тепла в радиантной камере.
Эффективность передачи тепла конвекцией обусловлена прежде всего скоростью движения дымовых газов в конвекционной камере. Стремление к большим скоростям, однако, сдерживается допустимыми величинами сопротивления движению газов.
В качестве топлива для трубчатых печей нефтеперерабатывающих заводов используют жидкое нефтяное топливо (продукты нефтепереработки) и природныйгаз. Вид применяемого топлива определяет конструкцию и особенности оборудования для его сжигания.
Процесс сжигания топлива можно условно разделить на несколько последовательных этапов: предварительный подогрев топлива мелкодисперсное распыливание его, перемешивание с воздухом нагрев топливно-воздушной смеси до температуры воспламенения при одновременном испарении топлива, пирогекное разложение и сжигание.
Предварительный подогрев жидкого топлива производят втопливных емкостях, в специальных теплообменниках, а также в самих форсунках. Подогрев особенно важен для высоковязких топлив Максимальную температуру подогрева устанавливают из соображений экономичности и предотвращения образования коксав каналах форсунок.
В форсунках топливо распыляют для приведения его в мелкодисперсное состояние, при котором смешение с воздухом и последующее полное сгорание топлива облегчаются и ускоряются.
В большинстве трубчатых печей жидкое топливо распыляют водяным паром, реже — воздухом; механический же распыл почтине применяется.
Распыление представляет собой сложный комплекс физико- химических процессов: внутриканальный распад топлива при прохождении через сопло форсунки, механическое разрушение под действием сил трения, возникающих между распылителем и топливом, кавитация, приводящая к парообразованию и вскипанию топлива.
Паровые форсунки просты по конструкции, однако в них расходуется много пара (примерно 0,3—0,6 кг на 1 кг топлива). Воздушные же форсунки применяют тогда, когда они могут работать на воздухе от вентилятора, т. е. при низком напоре воздуха; в противном случае они неэкономичны.
Распыленное топливо в процессе смешения с воздухом или после него нагревается за счет тепла в форсуночной амбразуре и топке до температуры воспламенения смеси. При этом оно испаряется и подвергается пирогенному разложению. Заключительным этапом является полное сгорание топливной смеси.
Размеры факела, исходящего от форсунки, определяются скоростью прохождения топлива через все описанные этапы. Длина факела зависит и от расхода топлива на одну форсунку.
Процесс сжигания газообразного топлива, в отличие от сжигания жидкого топлива, состоит из меньшего числа этапов: в форсунке или в начале топки газ смешивается с воздухом, затем топливно-воздушная смесь нагревается до температуры воспламенения и сгорает. Таким образом, качество сжигания газа зависит от степени перемешивания его с воздухом и быстроты нагрева смеси. Первое достигается дроблением газа на отдельные мелкие струи, равномерно распределенные в сечении форсуночной амбразуры, второе — устройством специальных туннелей, в которых засчет тепла среды топливно-воздушная смесь с большой скоростью нагревается до температуры воспламенения.
В большинстве трубчатых печей для сжигания газообразного топлива применяют газовые горелки простой конструкции. Они представляют собой шнцентрично расположенные в форсуночной амбразуре кольцевые трубчатые коллекторы (бублики), снабженные множеством калиброванных сопел для выхода газа. Диаметр сопел выбирают в зависимости от их числа к требуемой производительности каждой горелки. Такие горелки довольно долговечны и легко изготовляются в заводских условиях. Однако эксплуатационные показатели их невысоки.
Широко распространены комбинированные газонефтяные форсунки ГНФ-1М и ГНФ-3, которые работают на газовом топливе, но в случае прекращения подачи газа могут быть быстро переведены на жидкое топливо. В форсунках обеих конструкций предусмотрена возможность продувки паром каналов жидкого топлива, что предотвращает забивание топливных сопел коксом или грязью.
На рис. УП-18 показана универсальная газомазутная форсунка ФГМ-4 конструкции Гипронефтемаша. Она приспособлена для работы на низконапорном воздухе (200—300 мм вод. ст.).
Форсунка снабжена специальным завихрителем 1 (кожух с лопатками), сообщающим потоку воздуха вращательное движение. Воздушный распыл топлива регулируется заслонкой 3> которая открывается рукояткой 4, создавая кольцевой зазор между завихрителем и корпусом форсунки. Подача жидкого топлива регулируется вентилем 6 в парожидкостной камере 5. Часть форсунки для сжигания газа состоит из газового кольцевого коллектора 9, в который ввернуты наконечники 10. Воздух для горения газа поступает через расположенные на корпусе форсунки окна 7, прикрытые регистром 8.
Проблема короткопламенного горения газа разрешена в печах беспламенного горения с излучающими стенками топки, в которых достигается полное предварительное смешение газа и воздуха. При этом благодаря применению инжекционных смесителей удается добиться полного сгорания топлива при коэффициенте избытка воздуха 1,05—1,10. Смесь газа и воздуха, тщательно перемешанная и подогретая до температуры воспламенения, сгорает почти мгновенно, поэтому в горелках рассматриваемых печей продолжительность горения зависит от времени, необходимого для нагрева смеси до указанной температуры.