- •1. Классическое определение вероятности. Геометрическая вероятность. Формула полной вероятности.Формула Байеса.
- •2.Алгоритм и его свойства. Методы записи алгоритмов.
- •3. Булева алгебра и вопросы, связанные с ее применением
- •4.Векторы в трехмерном пространстве. Понятия правого ортонормированного базиса. Скалярное, векторное и смешанное произведения.
- •5.Виды уравнений плоскостей и прямых в пространстве. Условия их параллельности и перпендикулярности.
- •6.Группы, кольца, поля (определения и примеры)
- •7. Дискретні випадкові події. Числові характеристики випадкових подій та їх властивості.
- •8. Диференціальні рівняння, що припускають зниження порядку.
- •9. Диференціальні рівняння, які не мають розв’язків відносно похідної. Рівняння Лагранжа і Клеро..
- •11. Дифференцируемось функций многих действительных переменных. Экстремумы функций многих действительных переменных.
- •12. Диалоговый и пакетный режим работы эвм с пользователем. Принципы функционирования мультипрограммных ос.
- •13. Элементарные функции комплексной переменной и их свойства.
- •14. Загальні поняття про системи числення
- •17. Интегрирование фкп. Интеграл по замкнутому контуру от аналитической функции. Интегральная формула Коши и следствия из нее.
- •18.Интерполирование функций. Интерпол. Полином лагранжа
- •19.Интуитивное и техническое понятие информации. Понятие бита и байта. Модель оперативной памяти эвм.
- •20. Квадратичные формы: ранг, канонический и нормальный виды, сигнатура. Способы сведения к каноническому виду.
- •21.Кинетическая энергия. Работа силы. Кинетическая энергия
- •Работа силы
- •22. Классификация изолированных особых точек фкп. Интегральный вычет.
- •23. Кратные интегралы (двойные, тройные): определение, основные свойства. Применение.
- •24. Криволінійні та поверхневі інтервали: означення, основні властивості, застосування
- •25. Линии 2-го порядка
- •27. Линейные неоднородные дифференциальные уравнения 2го порядка с постоянными коэффициентами. Метод вариации произвольных постоянных.
- •28. Лінійні неоднорідні диференціальні рівняння n-го порядку з сталими коефіцієнтами. Спеціальна права частина.
- •30.Линейные операторы. Собственные векторы и собственные значения линейных операторов.
- •31. Матрицы. Операци над матрицами. Определители, миноры, алгебраические дополнения.
- •32. Методи комбінаторного аналізу та їх використання для розв'язання задач
- •33. Метричні простори: означення, приклади, збіжність у метричному просторі. Принцип стискаючих відображень та його застосування
- •34.Многочлены над полями q,r,с. Основная tr алгебры.
- •35. Простейшие движения твердого тела. Вращательное движение.
- •Вращательное движение твердого тела.
- •36. Простейшие движения твердого тела. Поступательное движение.
- •Поступательное движение твердого тела.
- •37. Непрерывность функции одной переменной. Свойства непрерывных функций. Понятие точек разрыва и их классификация.
- •38.Обратные матрицы. Методы нахождения обратной матрицы.
- •39. Определенный инт-л и его св-ва
- •40. Определения теории графов. Задачи оптимизации на графах.
- •42.Основные команды пользователя ос ms-dos и windows. Понятие диалоговой оболочки. Примеры.
- •43. Основные логические блоки эвм и их назначения.
- •44. Основні типи диференціальних рівнянь 1-го порядку
- •45. Основные типы диалогов эвм-человек.
- •46. Основные типы уравнений матфизики.
- •Теплопроводность стержня
- •Теплопроводность пластины
- •Стационарный случай
- •48. Поверхности 2-го порядка.
- •49.Повторение испытании. Формула Бернулли. Формула Пуассона. Локальная и интегральная теоремы Муавра и Лапласа.
- •50. Поле комплексных чисел. Различные формы записи комплексных чисел. Формула Муавра.
- •51. Понятие математического (программного) обеспечения эвм. Инструментальное математическое обеспечение. Примеры.
- •53. Понятие ос, ее основные компоненты. Понятие ресурса эвм.
- •1. Операционная система персональных эвм
- •2. Основные составные части ms-dos
- •Основные команды dos
- •3. Версии dos
- •Ресурсы стандартные и нестандартные
- •54. Понятие первообр-й ф-и, неопр. Инт-ла и их св-ва.
- •1)Метод замены пер-й
- •2)Метод интегр-я по частям
- •55. Понятие функции комплексной переменной. Предел, непрерывность, производная функции комплексной переменной. Условия Коши-Римана дифференцируемости функции.
- •57.Прямая на плоскости. Уравнение прямой на плоскости в прямоугольной сис. Координат.
- •58.Ранг матрицы, способы его вычисления. Теорема Кронекера – Капелли.
- •59. Рівняння рівноваги довільної плоскої системи сил.
- •61.Решение задачи Коши для обыкновенного диф. Ур. Методом Эйлера
- •62. Решение нелинейных алгебраических уравнений методом Ньютона.
- •63.Решение системы линейных алгебраических уравнений методом простой итерации.
- •65. Системы линейных алгебраических уравнений.
- •67. Скалярне та векторне поля, їх характеристики. Формули Остроградського-Гаусса та стокса.
- •69. Технологический процесс создания рабочей программы для эвм с применением транслятора (текстовый редактор, транслятор, компоновщик).
- •70. Трансляторы и интерпретаторы. Назначение и отличие.
- •71. Тригонометрический ряд фурье
- •72.Формула Тейлора функции одной действительной переменной и ее остаточный член в разных формах. Ряд тейлора. Разложение в ряд Маклорена основных элементарных функций.
- •Разложение в ряд Маклорена основных элементарных функций.
- •73.Функциональные последовательности и ряды. Их сходимость и равномерная сходимость. Условия почленного дифференцирования и интегрирования. Степенные ряды.
- •Степенные ряды
- •74. Численное интегрирование. Формула трапеций.
- •Формула трапеций.
- •76.Числовые ряды, признаки их сходимости. Абсолютно и условно сходящиеся ряды, их свойства.
- •Знакопеременные числовые ряды
37. Непрерывность функции одной переменной. Свойства непрерывных функций. Понятие точек разрыва и их классификация.
Пусть f:E R, a -точка области определения.
Определение (непрерывность функции в точке). Функция f(x) называется непрерывной в точке a, если
U(f(a)) U(a) (f(U(a)) U(f(a))).
Определение (непрерывность функции по Коши). Функция f(x) называется непрерывной в точке a, если > 0 ()>0: x удовлетворяющих условию |x-a|< , выполнено неравенство |f(x)-f(a)|<
Замечание. Если a – изолированная точка множества E, то есть точка, что в некоторой окрестности этой точки нет других точек множества E, кроме точки a, то U(a) = a. Следовательно, f(U(a)) = f(a) U(f(a)), U(f(a)). Таким образом, в любой изолированной точке функция непрерывна. Поэтому содержательная часть понятия непрерывности относится к случаю, когда a- предельная точка множества E.
Из определения непрерывной функции следует, что
f:E R непрерывна в a E, где a- предельная точка E limx af(x) = f(a)
Последнее равенство можно переписать в следующей форме
limx af(x) = f(limx ax),
которое говорит о том, что непрерывные в точке функции перестановочны с операцией предельного перехода.
Приведем еще одно определение непрерывной функции.
Определение (непрерывность "на языке приращений"). Функция называется непрерывной в точке a, если выполнено условие
lim x 0 y = 0,
где y = f(a+ x)-f(a).
Точки разрыва
Определение . Точка a называется точкой разрыва функции f(x), если эта функция не является непрерывной в данной точке.
Записав отрицание определения непрерывной функции, получим определение точки разрыва:
Определение (точки разрыва). a - точка разрыва f, если
>0 ()>0 x E : |x-a|< |f(x)-f(a)|>.
Различают точки разрыва первого рода (когда существуют конечные односторонние пределы функции слева и справа при x a, не равные друг другу) и второго рода (когда хотя бы один из односторонних пределов слева или справа равен бесконечности или не существует). К точкам разрыва первого рода относятся точки устранимого разрыва, когда предел функции при x a существует, но в точке a функция либо неопределена, либо f(a) lim x af(x).
Замечание. В точке устранимого разрыва функцию f(x) можно доопределить так, чтобы она стала непрерывной, положив f(a) = limx af(x).
Свойства функций, непрерывных в точке
Отметим основные локальные свойства непрерывных функций.
Теорема (локальные свойства непрерывных функций).
Пусть функция f:E R непрерывна в точке a. Тогда f(x) ограничена в некоторой окрестности точки a.
Пусть функция f(x) непрерывна в точке a и f(a) 0, то в некоторой окрестности точки a все значения функции положительны или отрицательны вместе с f(a).
Если f(x), g(x) - непрерывны в точке a, то функции: f(x)+g(x), f(x)g(x), f(x)/g(x) (при g(a) 0 ) непрерывны в точке a.
Если функция g(x):Y R непрерывна в точке b Y, а функция f:E Y непрерывна в точке a, f(a) = b, тогда композиция g° f также непрерывна в точке a.
Данная теорема следует из определения непрерывности функции и соответствующих свойств предела функции.
Глобальные свойства непрерывных функций
Определение (непрерывность функции на множестве). Функция называется непрерывной на множестве, если она непрерывна в каждой точке множества.
То, что f(x) непрерывна на множестве X обозначается следующим образом: f(x) CX.
Определение. Функция называется непрерывной на отрезке [a,b] , если она непрерывна в каждой внутренней точке этого отрезка и непрерывна справа в точке a и непрерывна слева в точке b.
То, что f(x) непрерывна на отрезке [a,b] обозначается следующим образом: f(x) C[a,b].
Перечислим основные глобальные свойства непрерывных функций.
Теорема (глобальные свойства непрерывных функций).
(Первая теорема Вейерштрасса) Если функция f(x) C[a,b], то она ограничена на [a,b] .
(Вторая теорема Вейерштрасса) Если f(x) C[a,b], то она достигает на [a,b] своих точных верхней и нижней граней
(Теорема Коши) Если f(x) C[a,b] и f(a)f(b)<0, то существует c [a,b] f(c) = 0.
Замечание.
Функции, не являющиеся непрерывными на данном отрезке, могут принимать точную верхнюю и точную нижнюю грани, например функция Дирихле.
Если в условиях теоремы отрезок заменить на интервал, то теорема будет неверна, например, функция 1/x на интервале (0,1) непрерывна, но не является ограниченной; функция y = x на интервале (0,1) не достигает своих точных граней.
