
- •Фогель ф., Мотульски а. Генетика человека: в 3-х т. Т. 1: Пер. С англ. – м.: Мир, 1989. – 312 с.
- •Ф. Фогель, а.Мотульски генетика человека
- •Фогель ф., Мотульски а. Генетика человека: в 3-х т. Т. 1: Пер. С англ. – м.: Мир, 1989. – 312 с.
- •Предисловие редакторов перевода
- •Предисловие ко второму изданию
- •Предисловие к первому изданию
- •Введение
- •1. История генетики человека
- •1.1. Греки
- •1.2. Ученые до Менделя и Гальтона
- •1.3. Работа Гальтона «Наследование таланта и характера» [248]
- •1.4. Работа Грегора Менделя [266]
- •1.5. Прикладные исследования применительно к человеку: «врожденные ошибки метаболизма» по Гэрроду
- •1.6. Видимые носители генетической информации: первые исследования хромосом
- •1.7. Первые достижения в области генетики человека
- •1.7.1. Группы крови аво
- •1.7.2. Закон Харди-Вайнберга
- •1.7.3. Достижения генетики человека в период 1910-1930 гг.
- •1.8. Генетика человека, евгеника и политика
- •1.8.1. Великобритания и сша [236; 246; 256; 263; 283]
- •1.8.2. Германия [250; 236а]
- •1.8.3. Советский Союз [246, 250]
- •1.8.4. Генетика поведения человека
- •1.9. Развитие медицинской генетики (с 50-х гг. По настоящее время)
- •1.9.1. Генетическая эпидемиология
- •1.9.2. Биохимические методы
- •1.9.3. Индивидуальные биохимические различия
- •1.9.4. Цитогенетика, генетика соматических клеток, пренатальная диагностика
- •1.9.5. Методы исследования днк в медицинской генетике
- •1.9.6. Нерешенные проблемы
- •2. Хромосомы человека
- •2.1. Цитогенетика человека – запоздалое, но счастливое рождение
- •2.1.1. История развития цитогенетики человека
- •2.1.2. Нормальный кариотип человека в митозе и мейозе
- •2.1.2.1. Митоз
- •2.1.2.2. Приготовление и окрашивание препаратов метафазных хромосом [201; 88; 406]
- •2.1.2.3. Нормальный кариотип человека в метафазе митоза
- •2.1.2.4. Мейоз
- •2.2. Хромосомные заболевания человека
- •2.2.1. Синдромы, связанные с аномалиями числа хромосом
- •2.2.2. Синдромы, связанные со структурными аномалиями аутосом
- •2.2.2.1. Кариотипы u клинические синдромы
- •2.2.2.2. Сегрегация и пренатальная селекция транслокаций: методологические аспекты
- •2.2.3. Половые хромосомы
- •2.2.3.1. Первые наблюдения
- •2.2.3.3. Дозовая компенсация х-хромосомы млекопитающих [357]
- •2.2.4. Хромосомные аберрации и спонтанные аборты [413]
- •2.3. Организация генетического материала в хромосомах человека
- •2.3.1. Структура хроматина
- •2.3.1.1. Уникальная и повторяющаяся днк
- •2.3.1.2. Гетерохроматин
- •2.3.1.3. Нуклеосомная структура хроматина [1172; 427]
- •2.3.1.4. Интеграция хроматиновых волокон в хромосомную структуру
- •2.3.1.5. Интегральная модель структуры хромосомы
- •2.3.2. Генетический код
- •2.3.3. Тонкая структура генов человека: «Новая генетика»
- •2.3.3.1. Анализ гена человека
- •2.3.3.2. Рестрикционные эндонуклеазы
- •2.3.3.3. Гибридизация нуклеиновых кислот
- •2.3.3.4. Секвенирование днк [117; 122; 381]
- •2.3.3.5. Сортировка хромосом при помощи цитофлуорометрии
- •2.3.3.6. Анализ β-глобинового гена и обобщение опыта исследования одного гена.
- •2.3.3.7. Структура гена фактора VIII (антигемофилический фактор)
- •2.3.3.8. Семейства генов
- •2.3.3.9. Полиморфизм сайтов рестрикции [548; 507; 505]
- •2.3.4. Динамичность генома
- •2.3.5. Геном митохондрий
- •2.3.6. Новая генетика и концепция гена
- •3. Формальная генетика человека
- •3.1. Менделевские типы наследования и их приложение к человеку
- •3.1.1. Кодоминантный тип наследования
- •3.1.2. Аутосомно-доминантиый тип наследования
- •3.1.3. Аутосомно-рецессивный тип наследования
- •3.1.5. Родословные, не соответствующие простым типам наследования
- •3.1.6. «Летальные факторы» [696]
- •3.1.7. Гены-модификаторы
- •3.1.8. Количество известных заболеваний человека с простым типом наследования
- •3.2. Закон Харди—Вайнберга и его приложения
- •3.2.1. Формулировка и вывод закона
- •3.2.2. Соотношения Харди—Вайнберга доказывают генетическую основу групп крови системы аво
- •3.2.3 Генные частоты
- •3.3 Статистические методы формальной генетики: анализ сегрегационных отношений
- •3.3.1. Сегрегационные отношения как вероятности
- •3.3.2. Простые вероятностные проблемы в генетике человека
- •3.3.3. Тестирование сегрегационных отношений в отсутствие смещений, связанных с регистрацией: ко доминантное наследование
- •3.3.4. Тестирование сегрегационных отношений: редкие признаки
- •3.3.5. Дискриминация клиникогенетических вариантов: генетическая гетерогенность
- •3.3.6. Заболевания со сложным типом наследования
- •3.4. Сцепление: локализация генов на хромосомах
- •3.4.1. Классические подходы в экспериментальной генетике: эксперименты по скрещиванию и гигантские хромосомы
- •3.4.3. Анализ сцепления у человека: гибридизация клеток и днк-технология
- •3.5. Тесно сцепленные и функционально родственные гены
- •3.5.1. Некоторые примеры из экспериментальной генетики
- •3.5.2. Некоторые особенности генетической карты человека
- •3.5.3. Почему существуют кластеры генов?
- •3.5.4. Группы крови: Rh-комплекс, неравновесие по сцеплению
- •3.5.5. Главный комплекс гистосовместимости (мнс) [193; 188]
- •3.5.6. Генетическая детерминация мимикрии у бабочек
- •3.5.7. Гены х-хромосомы человека, имеющие родственные функции
- •3.5.8. Неравный кроссинговер
- •3.6. Условия и ограничения генетического анализа у человека: мультифакториальное наследование
- •3.6.1. Уровни генетического анализа
- •3.6.1.1. Генный уровень
- •3.6.1.2. Анализ продукта гена: биохимический уровень
- •3.6.1.3. Качественный феногенетический анализ: простые типы наследования
- •3.6.1.4. Генетический анализ на уровне количественного фенотипа – биометрический уровень
- •3.6.1.5. Концепция наследуемости
- •3.6.1.6. Один пример: рост
- •3.6.1.7. Количественная генетика; концепции Менделя и Гальтона
- •3.6.2. Мультифакториальное наследование в комбинации с пороговым эффектом
- •3.6.2.1. Описание модели: эксперименты на животных
- •3.6.2.2. Простая теоретическая модель
- •3.6.2.3. Как нужно использовать модель для анализа данных [925]?
- •3.6.2.4. Какой вывод следует сделать, если статистический анализ не дает четкого ответа?
- •3.6.2.5. Индуцированные радиацией доминантные мутации у мыши: мутации главных генов, не выявленные у человека
- •3.6.2.6. Идентификация элементарных клинико-генетических вариантов моногенного наследования с использованием дополнительных фенотипических критериев
- •3.6.2.7. Как анализировать мулыпифакториальный признак, если отдельные формы с простыми типами наследования выделить нельзя?
- •3.7. Генетический полиморфизм и патология
- •3.7.1. Новая стратегия исследований
- •3.7.2. Ассоциация заболеваний с группами крови
- •3.7.2.1. Система аво
- •3.7.2.2. Kell-система
- •3.7.3. Система hla и заболевания [888, 207а]
- •3.7.4. Полиморфизм α1-антитрипсина и патология [749, 653]
- •3.8. Концепция: природа - воспитание. Близнецовый метод
- •3.8.1. Исторические замечания
- •3.8.2. Исходная концепция
- •3.8.3. Биология близнецовости
- •3.8.4. Ограничения близнецового метода
- •3.8.5. Диагностика зиготности
- •3.8.6. Применение близнецового метода для анализа альтернативных признаков
- •3.8.7. Пример: проказа в Индии
- •3.8.8. Близнецовые исследования других широко распространенных заболеваний
- •3.8.9. Близнецовый метод в изучении признаков с непрерывным распределением
- •3.8.10. Значения оценок наследуемости: данные по росту
- •3.8.11. Метод близнецовых семей [768; 732]
- •3.8.12. Метод контроля по партнеру [680]
- •3.8.13. Вклад генетики человека в теорию болезней [923]
- •3.8.14. Современное представление о генетике широко распространенных болезней [808, 810]
- •3.8.14.1. Биологические и патофизиологические подходы к генетической этиологии широко распространенных заболеваний
- •3.8.14.2. Генетика ишемической болезни сердца (ибс) [847; 827; 570]
- •Ассоциации ишемической болезни сердца с генетическими маркерами [570, 801]
- •Оглавление
- •Электронное оглавление
- •1. История генетики человека 20
- •2. Хромосомы человека 35
- •3. Формальная генетика человека 151
2.1.2.4. Мейоз
Биологическая функция мейоза. Благодаря митозу поддерживается постоянство числа хромосом в ряду клеточных поколений. В отличие от митоза мейотический процесс обеспечивает уменьшение (редукцию) диплоидного числа хромосом (46 у человека) наполовину до гаплоидного (23 у человека). При оплодотворении в результате слияния двух гаплоидных половых клеток в зиготе восстанавливается диплоидное число 46, которое сохраняется во всех последующих митотических делениях. В мейозе расхождение гомологичных хромосом в разные половые клетки происходит случайно, что увеличивает генетическую изменчивость. Соматические клетки являются диплоидными (2n), они содержат обе гомологичные хромосомы одной пары, в то время как половые клетки гаплоидны (n) и несут только один гомолог из каждой пары. Последний цикл регулярного синтеза ДНК происходит в интерфазе непосредственно перед первым мейотическим делением и предшествует фазам мейоза, показанным на рис. 2.18.
Первое деление мейоза. Профаза I. На этой стадии становятся видимыми длинные хромосомные нити (лептотена), затем происходит конъюгация (спаривание) гомологичных хромосом, которая часто начинается с теломерных районов (зиготена). Точный молекулярный механизм конъюгации хромосом еще не известен. Две конъюгированные гомологичные хромосомы (называемые на этой стадии «бивалентом») формируют на субмикроскопическом уровне характерную двойную структуру, так называемый синаптонемальный комплекс (рис. 2.19). К моменту завершения конъюгации хромосомы вследствие спирализации становятся короче и толще (пахитена). В каждом биваленте обнаруживается продольная щель и становятся видимыми расположенные бок о бок четыре хроматиды (диплотена). В то время как сестринские хроматиды остаются спаренными, несестринские - разделяются. На этой стадии несестринские хроматиды соединяются между собой в некоторых точках, образуя фигуру, напоминающую греческую букву χ. Такие фигуры получили название «хиазм».
Метафаза I. Хромосомы располагаются в экваториальной плоскости, а их центромерные районы оттянуты к полюсам. Гомологичные хромосомы начинают разделяться, но еще удерживаются в участках хиазмообразования, особенно часто – в дистальных районах.
Анафаза I. Начинается «терминализация» хиазм, т. е. они перемещаются к концам хромосом и затем исчезают. Гомологичные хромосомы окончательно разделяются и перемещаются к противоположным полюсам. Образуются дочерние ядра (интеркинез).
Второе деление мейоза. В принципе, это митотическое деление удвоенного гаплоидного набора хромосом. Как указывалось выше, мейоз начинается после завершения последнего цикла репликации ДНК, в результате чего количество генетического материала в ходе первого деления остается учетверенным (2x2 гомологичных хромосом), но после завершения второго деления оно распределяется по четырем половым клеткам. Второй важный аспект мейоза состоит в случайном распределении негомологичных хромосом, благодаря чему существует большое число возможных комбинаций хромосом в разных половых клетках. При наличии у человека 23 пар хромосом число возможных комбинаций в одной гамете составляет 223 = 8 388 608. Число возможных комбинаций хромосом в потомстве данной пары родителей состав-
2. Хромосомы человека 55
|
Рис. 2.18. Стадии мейоза. Отцовские хромосомы окрашены в черный цвет, материнские - в белый. На рисунке изображен мейоз у мужчины. В мейозе у женщины образуется полярное тельце. |
56 2. Хромосомы человека
|
Рис. 2.19. Слева: электронная микрофотография синаптонемального комплекса с точкой фиксации (fp) в середине пахитены (сперматоцит мыши). Видны два электроноплотных латеральных плеча (la) и темный участок средней плотности, соответствующий месту спаривания. OsO4, Vestopal, x 36000. (Schleiermacher, Schmidt, 1973.) Справа. Синаптонемальный комплекс сперматоцита человека. К - центромера; стрелки указывают на плотные участки. Верхняя и нижняя врезки: полосы, параллельные оси синаптонемального комплекса. Увеличение х 15800; полосы могут соответствовать местам рекомбинации. (По Solari, Chromosoma, 81, p. 330, 1980.) |
ляет 223 х 223, а в действительности еще больше – за счет кроссинговера (перекреста), происходящего во время конъюгации гомологичных хромосом. Морфологическим проявлением кроссинговера являются хиазмы. Каждая хиазма соответствует одному событию кроссинговера, в котором участвуют две несестринские хроматиды (рис. 2.20). Одно время активно дебатировался вопрос о том, происходит ли кроссинговер во время последнего цикла репликации ДНК посредством механизма «выбора копии» или уже после синтеза ДНК путем разрыва и последующего крестообразного воссоединения несестринских хроматид в гомологичных сайтах (рис. 2.21). Эта альтернатива теперь, по-видимому, разрешена в пользу гипотезы «обменов». Например, в профазе I наблюдается так называемый внеплановый синтез ДНК, который вполне может отражать процесс воссоединения концов при кроссинговере. Молекулярные механизмы рекомбинации не являются специфической проблемой генетики человека. Они обстоятельно обсуждаются в руководствах по молекулярной генетике.
Сперматогенез. С наступлением половой зрелости сперматоциты мужчины постоянно претерпевают мейотические деления. После второго мейотического деления происходит плотная упаковка ДНК и митохондрий и завершается формирование спермиев, которые приобретают способность активно двигаться. Препараты хромосом на стадии сперматогониальных митозов или на стадии мейотического деления можно получить из материала биопсии тестикул, удаленных при хирургической операции.
Хромосомы на стадии диакинеза в
2. Хромосомы человека 57
|
|
Рис. 2.20. Кроссинговер и образование хиазм. А. Гомологичные хроматиды соединены между собой. Б. Происходит кроссинговер с образованием хиазм. В. Разделение хиазм. |
Рис. 2.22. Мейоз у мужчины. Стадия диакинеза. Ясно виден бивалент XY [405]. Стрелки указывают на хиазмы. |
|
Рис. 2.21. Разрыв и воссоединение несестринских хроматид при кроссинговере. |
мейозе у мужчины показаны на рис. 2.22. Гомологи еще тесно прилежат один к другому в их теломерных районах, в то время как центромерные районы уже начали перемещаться к полюсам. Половой бивалент четко отличается от всех остальных благодаря тому, что Х- и Y-хромосомы ассоциируют «конец в конец» и хиазмы в нем не обнаруживаются. Во время пахитены половой бивалент начинает конденсироваться раньше других и находится в «половом пузырьке». Часть района короткого плеча Х-хромосомы и короткое плечо Y-хромосомы конъюгируют (рис. 2.23). Гиб-
58 2. Хромосомы человека
|
Рис. 2.23. Спаривание коротких плеч хромосом X и Y в раннем мейозе человека. (Courtesy of Dr. Goetz.) |
ридизационные эксперименты с ДНК-зондами показали, что эти районы структурно гомологичны [502]. В случае свободной рекомбинации генов, локализованных в гомологичных сегментах Х- и Y-хромосом, их поведение не должно было бы отличаться от поведения аутосомных генов. Такие «псевдоаутосомные» Х- и Y-сцепленные гены действительно были идентифицированы [315а; 488а]. Холдейн (1936) [372], учитывая возможность редкого кроссинговера между Х- и Y-хромосомами, предположил существование частичного сцепления с полом тех генов человека, которые локализованы в гомологичном для Х- и Y-хромосом сегменте. Однако удовлетворительные доказательства такого частичного сцепления с полом у человека пока не получены. Более того, локусы стероид-сульфатазы и эритроцитарного антигена Xg, расположенные очень близко к псевдоаутосомному району Х-хромосомы, сегрегируют в соответствии с классическим Х-сцепленным наследованием.
Среднее число хиазм на клетку и размах изменчивости по этому показателю приведены в табл. 2.2. Некоторые биваленты могут содержать несколько хиазм, свыше пяти и даже шесть. Исходя из числа хиазм, генетическая длина (разд. 3.4) генома человека составляет около 25,5 морганиды у мужчин; у женщин эта величина больше, но точные оценки еще не получены [450]. Домовая мышь – единственное млекопитающее, кроме человека, для которого получены достоверные оценки, – имеет геном длиной 16,2-19,2 морганиды [88].
Оогенез. У всех млекопитающих оогенез сильно отличается от сперматогенеза. Общая схема представлена на рис. 5.13 (разд. 5.1.3.3). На рис. 2.24 и 2.25 приведена схема цитологических процессов. Ооциты полностью формируются уже на поздней эмбриональной стадии. После диплотены клетка переходит в стадию диктиотены, для которой характерна морфология хромосом типа «ламповых щеток». В этой стадии мейоз останавливается на долгие годы. После рождения большинство ооцитов дегенерирует. В процессе полового созревания некоторые ооциты начинают расти, заканчивают первое мейотическое деление и вступают в профазу II и затем в метафазу II. В это же время начинается овуляция. Мейоз завершается только после оплодотворения. Вокруг женских и мужских гаплоидных наборов хромосом образуется ядерная мембрана, и зигота теперь содержит два «пронуклеуса». Эта стадия особо чувствительна к нарушениям, выз-
Таблица 2.2. Число хиазм в мейозе у мужчины (1-е деление) [88] |
|||||
Количество ИНДИВИДОВ |
Возраст |
Количество клеток |
Хиазмы/клетка |
Хиазмы/ бивалент, среднее |
|
число |
среднее |
||||
48 |
15-79 |
817 |
39-64 |
54,4 |
2,36 |
2. Хромосомы человека 59
|
Рис. 2.24. Митоз и мейоз у плода женского пола человека. До 3-го месяца отмечаются только митотические деления (А — интерфаза; Б – метафаза; В— анафаза). Затем становятся видимыми первые мейотические деления (Г – лептотена; Д -зиготена). Начиная с 7-го месяца в мейоз входят новые ооциты. Первые пахитены (Е) и диплотены (Ж) наблюдаются у семимесячного плода. Затем мейоз задерживается, формируется ядерная мембрана, образуется ядрышко и клетки входят в «фазу покоя», диктиотену (З). Клетки, окружающие ооцит (И), выполняют функции питающих; позднее они дадут начало фолликулу, в котором заключен ооцит. (По Ohno et al., 1962; см. также Bresch, Hausmann, Klassische und Molekulare Genetik, 1972.) |
ванным, например, мутагенными агентами (разд. 5.2.1). Несколько часов спустя два пронуклеуса сливаются, образуя диплоидное ядро, и зигота начинает делиться путем обычных митозов.
Исследование мейотических хромосом в оогенезе сопряжено с большими трудностями. Было опубликовано лишь несколько удовлетворительных микрофотографий (рис. 2.26). Анализ генетического сцепления показывает, что кроссинговер у женщин происходит чаще, чем у мужчин (разд. 3.4), следовательно, и хиазм у женщин должно быть больше.
У женщин только одна из четырех клеток - продуктов мейоза развивается в ооцит, три другие формируют полярные тельца, которые в норме не оплодотворяются.
60 2. Хромосомы человека
|
Рис. 2.25. Мейоз у женщины. Мейоз начинается после трех месяцев пренатального развития. В детстве цитоплазма ооцита увеличивается в объеме, но ядро остается неизменным. Около 90% всех ооцитов дегенерирует к началу полового созревания. В первой половине каждого месяца лютеинизирующий гормон (LH) стимулирует мейоз, и он почти завершается (завершаются профаза, которая началась в эмбриональном периоде; метафаза I, анафаза I, телофаза I и в течение нескольких минут - профаза II и метафаза II). Затем мейоз снова останавливается. Овуляция индуцируется лютеинизирующим гормоном (LH). Оплодотворение происходит в фаллопиевой трубе. После этого завершается второе мейотическое деление. Образуется ядерная мембрана, окружающая материнские и отцовские хромосомы. Спустя несколько часов два «пронуклеуса» сливаются и начинается первое деление дробления. (Bresch, Hausmann, Klassische und Molekulare Genetik, 1972.) |
2. Хромосомы человека 61
|
Рис. 2.26. Нерасхождение Х-хромосомы в первом (слева) и во втором (справа) делении мейоза у женщины. Оплодотворение нормальным сперматозоидом. Индивид с набором XXY может появиться в результате нерасхождения как в первом, так и во втором мейотическом делении. |
Обычно считают, что вероятность для хромосомы оказаться в полярном тельце не зависит от ее генетических особенностей. Данные о сохранении стандартных сегрегационных вероятностей для большинства генных мутаций (50:50, 25:75 и т. д.) свидетельствуют, что это допущение справедливо. Однако имеются и исключения (разд. 3.1.4): в случае структурных аберраций хромосом возможно неслучайное расхождение нормальных и аберрантных гомологов в полярные тельца. Половые различия в мейозе. Две основные особенности отличают мейоз у мужчин и женщин:
1. У мужчин все четыре клетки, образующиеся в результате мейотического деления, развиваются в зрелые гаметы, в то время как у женщин только одна из них становится зрелым ооцитом, остальные дегенерируют.
2. У мужчин мейоз следует непосредственно за серией митотических делений; он завершается, когда сперматиды на-
62 2. Хромосомы человека
чинают трансформироваться в зрелые спермин. У женщин мейоз начинается на очень ранних стадиях эмбрионального развития, и ему предшествует намного меньше оогониальных митотических делений. После этого мейотический процесс прерывается на длительный период и завершается только после оплодотворения.
Эти различия важны для генетики человека. То обстоятельство, что только одна из четырех клеток развивается в зрелый ооцит, а три полярных тельца почти (или совсем) не имеют цитоплазмы, дает возможность этому ооциту передать новой зиготе полный набор цитоплазматических компонентов, таких, как митохондрии и информационные РНК (разд. 4.7.1). Эти различия в клеточной кинетике, вероятно, обусловливают разницу между мужчинами и женщинами в частоте трисомий, с одной стороны, и точковых мутаций – с другой (разд. 5.1 и 5.2).