Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на билеты (1-ый семестр ВФ).doc
Скачиваний:
205
Добавлен:
10.05.2014
Размер:
1.15 Mб
Скачать
  1. Иерархия запоминающих устройств компьютера, причины многоуровневой организации памяти

Запоминающее устройство (ЗУ) — носитель информации, предназначенный для записи и хранения данных. В основе работы может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям. Структура памяти, в которой можно выделить несколько различных по характеристикам уровней, называется иерархической. При иерархической организации структуры памяти обычно каждый уровень (ступень) памяти с большим быстродействием имеет меньшую емкость ЗУ, использующиеся на самом высоком уровне иерархии имеют наименьшую информационную ёмкость и наибольшее быстродействие. Эту память называют набором регистров и относят к устройствам обработки, она позволяет выполнять некоторые логические и арифметические операции. На следующей ступени иерархии ЗУ ЭВМ находятся сверхоперативные ЗУ (СОЗУ) – устройства, имеющие быстродействие, соизмеримое с быстродействием процессора, и служащие для хранения информации (чисел и команд), которая наиболее часто встречается в процессе решения задач. На третьей ступени находится большая быстрая память, называемая оперативной. Оперативные ЗУ (ОЗУ) имеют более значительную информационную ёмкость и работают с циклом, в несколько раз большим цикла процессора. Для увеличения скорости обмена информацией между процессором и ОЗУ последние иногда разделяют на несколько модулей (блоков или секций) и обращаются к различным блокам непосредственно или через СОЗУ. На самом нижнем уровне находится медленная, но вместительная внешняя память. Во внешнем ЗУ (ВЗУ) обычно хранится вся вводимая в машину информация. ВЗУ являются наиболее экономичными для хранения больших массивов информации. Вывод: запоминающие устройства компьютера разделяют, как минимум, на два уровня: основную (главную, оперативную, физическую) и вторичную (внешнюю) память. Основная память – упорядоченный массив однобайтовых ячеек, каждая из которых имеет свой уникальный адрес (номер). Процессор извлекает команду из основной памяти, декодирует и выполняет ее. Для выполнения команды могут потребоваться обращения еще к нескольким ячейкам основной памяти. Обычно основная память изготавливается с применением полупроводниковых технологий и теряет свое содержимое при отключении питания. Вторичную память можно рассматривать как одномерное линейное адресное пространство, состоящее из последовательности байтов. В отличие от оперативной, она энергонезависима, имеет большую емкость и используется в качестве расширения основной памяти.

Оказывается, при таком способе организации по мере снижения скорости доступа к уровню памяти снижается и частота обращений. Ключевую роль здесь играет свойство реальных программ, в течение ограниченного отрезка времени способных работать с небольшим набором адресов памяти. Это эмпирически наблюдаемое свойство известно как принцип локальности или локализации обращений. Еще одна причина – стоимость/емкость/время доступа (смотри рисунок).

  1. Оперативная память компьютера – назначение, основные характеристики, динамика развития

Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно либо через кэш-память.

Основными характеристиками являются объем, время доступа и частота. Объем памяти определяется максимальным количеством информации, которая может быть помещена в эту память, и выражается в кб, Мб, Гб. Время доступа к памяти (секунды) представляет собой минимальное время, достаточное для размещения в памяти единицы информации. Частота – количество выполняемых операций в секунду.

Вся оперативная память, используемая в персональных компьютерах, является памятью со случайным доступом (RAM). Это значит, что процессор может обращаться к любому байту памяти по номеру столбца и строки, не затрагивая остальные байты. Всего существует два основных вида RAM: динамическая (Dynamic RAM) и статическая (Static RAM). Различия заключается в том, что динамическая память нуждается в частом обновлении содержимого. Статическая память, получив один раз заряд, способна хранить информацию, пока есть питание. Но когда питание отключается, оба типа памяти все «забывают». Статическая память быстрее динамической, однако и стоит значительно дороже.

Динамика развития. На первых ПК вся оперативная память была представлена одним блоком микросхем памяти. Причем память работала с той же частотой, что и процессор. С появлением 286 и 386 процессоров ситуация изменилась: память перестала успевать поставлять процессору данные. Процессор ждал несколько тактов, пока память передавала ему информацию. Первая память имела время доступа не менее 100 нс. Напряжение питания ОЗУ составляло 5 В.

Позже была разработана специальная быстрая память – FPM (fast page mode, постраничная адресация) Стандартное время доступа к такой памяти было 60-70 нс с частотой системной шины 66 МГц. FPM использовались до 1994 года.

В 1994 году появилась новая архитектура памяти: EDO. Она могла работать даже с частотой шины 75 МГц. Память этого типа использовалась в системных платах до Intel 430 FX, т.е. и в 486 компьютерах, и даже в Pentium'ах. Питание было 5 В или 3.3 В.

В 1997 году на смену EDO приходит SDRAM. Главной особенностью SDRAM стала синхронизация работы с процессором. До этого вся память работала асинхронно, теперь же процессор уже «знал», сколько тактов ему ждать, и он мог начать выполнять следующую операцию, не дожидаясь ответа RAM. Она поддерживает частоту шины 100 МГц. Питание осуществлялось от 3.3 В.

В 1999 Samsung выпускает DDR SDRAM (Double Data Rate SDRAM). Она стала обеспечивать удвоенную пропускную способность за счет работы на обеих границах тактового сигнала (подъем и спад). Питание такой памяти было 2.5 В. Первоначально она работала на частоте 100 МГц, а затем доросла аж до 266 МГц.

На смену DDR пришел DDR2. Основное отличие — вдвое большая частота работы шины, по которой данные передаются в буфер микросхемы памяти, при этом частота самой памяти осталась та же. Питание снизилось до 1,8 В.

На смену DDR2 пришел DDR3, который имеет пониженное на 40% потребление энергии, более высокую полосу пропускания (до 2400 МГц), а также сниженное тепловыделение.

Соседние файлы в предмете Информатика