
- •Определение информатики, составные части и краткая история развития
- •Классификация технических средств информатики и их краткая характеристика. Технические средства информатики
- •Основные части компьютера и их краткие характеристики
- •Иерархия запоминающих устройств компьютера, причины многоуровневой организации памяти
- •Оперативная память компьютера – назначение, основные характеристики, динамика развития
- •Центральный процессор – назначение, структура, основные характеристики
- •2 Основных типа архитектуры:
- •Расслоение центрального процессора, разновидности периферийных процессоров, мультизадачная и потоковая обработка
- •Периферийные устройства компьютера – классификация, принципы действия, краткие характеристики
- •Периферийные устройства (пу), назначение, разновидности, кодировки и представления информации в пу
- •Разновидности печатающих устройств, системы машинной графики – краткие характеристики и принципы действия
- •Разновидности внешних запоминающих устройств (взу) компьютера, их назначения и краткие характеристики
- •Накопители на жёстких магнитных дисках (нжмд), основные функциональные элементы нжмд, разновидности и краткие характеристики нжмд
- •Оптические и магнитооптические взу, динамика их развития, разновидности и краткие характеристики
- •Системы графического ввода/вывода (пассивные и интерактивные), назначение и краткие характеристики
- •Разновидности компьютерных мониторов, их основные характеристики, области применения, виды устройств, ввод информации, используемые в устройствах вывода на базе мониторов
- •Определение архитектуры компьютера, понятие интерфейса и его разновидности
- •Параллельная обработка – различные варианты построения архитектуры компьютера (классификация Флинна)
- •Суперкомпьютеры и большие компьютеры – особенности архитектуры и краткие характеристики
- •Современные тенденции в развитии суперкомпьютеров, кластерные системы, области применения, особенности архитектуры
- •Большие компьютеры (мейнфреймы), особенности архитектуры, динамика развития мейнфреймов фирмы ibm
- •Микропроцессоры – определение, классификация, номенклатура и краткие характеристики
- •Архитектура микропроцессоров и направления её развития, характеристики современных микропроцессоров и прогноз на 2012 год
- •Особенности архитектуры пк различных типов и их сравнительные характеристики (классификация шин и интерфейсов)
- •Современное состояние технических средств ibm подобных пк, тенденции развития, технические характеристики, номенклатура
- •Рабочие станции, серверы, их назначение, общность и различия
- •Классификация современных серверов, номенклатура ведущих производителей серверов – hp, ibm, Sun
- •Сети компьютеров – классификация и назначение (общий подход)
- •Глобальные вычислительные сети – назначение, принципы построения, состав технических средств
- •Методы доступа, применяемые в глобальных вычислительных сетях, краткие характеристики
- •Глобальные вычислительные сети, топология, компоненты, структура канала связи, основные виды передачи, разновидности модемов
- •Разновидности всемирных глобальных вычислительных сетей, принципы их организации, разновидности услуг
- •Разновидности локальных вычислительных сетей, их топология и методы доступа
- •Основные компоненты локальных вычислительных сетей, их функциональное назначение, их характеристики
- •Классификация современных языков программирования, назначение и сравнительные характеристики
- •Основные компоненты процедурно-ориентированных (императивных) языков программирования, их общность и различия
- •Объект данных – определение, перечислите наиболее распространённые типы данных, включённые в состав императивных языков программирования (Фортран, Паскаль, Си)
- •Укажите типы выражений, используемые в традиционных (императивных) языках программирования и опишите их структуру
- •Перечислите типы операторов, используемые императивными языками программирования, рассмотрите различные варианты реализации условных и операторов повторения (на примере Паскаля)
- •Основные принципы процедурно-ориентированного (модульного) программирования, разновидности модулей (на примере Фортрана)
- •Основные концепции структурного программирования, причины его появления, иерархия структурных фрагментов (на примере Паскаля)
- •Разновидности и краткие характеристики машинно-независимых языков программирования
- •Программное обеспечение эвм – общие сведения (определение программы, форматы программ, разновидности программного обеспечения, особенности разработки)
- •Разновидности организации прикладного программного обеспечения
- •Операционные системы – состав, характеристики отдельных частей, классификация
- •Инструментальное по эвм, разновидности трансляторов
- •Особенности операционных систем различных типов эвм – краткая характеристика
- •Управляющие программы ос – состав и функциональное назначение
- •Программы обслуживания библиотек – определение и разновидности файлов и каталогов, основные функции файловых систем
- •Структура по персональных компьютеров и его краткие характеристики
- •Разновидности ос, применяемых для пк, их состав и характерные особенности
- •Состав и структура ms dos
- •В чём Вы видите основные ограничения ms dos
- •Физическая организация файловых систем персональных компьютеров, в чём основные недостатки использования fat-16
- •Особенности по локальных вычислительных сетей, его разновидности и функциональное назначение
- •По персональных компьютеров – системные утилиты, разновидности и функциональное назначение
- •Инструментальное по персональных компьютеров
- •По персональных компьютеров – электронные таблицы – структура и функциональные возможности
- •Краткие характеристики os/2, unix
- •Структура сетевой ос. Разновидности сетевых ос, характеристики наиболее популярных сетевых ос
-
Большие компьютеры (мейнфреймы), особенности архитектуры, динамика развития мейнфреймов фирмы ibm
Большая универсальная ЭВМ — высокопроизводительный компьютер со значительным объёмом оперативной и внешней памяти, предназначенный для организации централизованных хранилищ данных большой ёмкости и выполнения интенсивных вычислительных работ.
Особенности и характеристики современных мейнфреймов:
Среднее время наработки на отказ. Время наработки на отказ современных мейнфреймов оценивается в 12–15 лет. Надёжность мейнфреймов —результат почти 60-летнего совершенствования. Группа разработки VM/ESA затратила 20 лет на удаление ошибок из ОС, и в результате была создана система, которую можно использовать в самых ответственных случаях.
Повышенная устойчивость систем. Мейнфреймы могут изолировать и исправлять большинство аппаратных и программных ошибок за счёт использования следующих принципов: дублирование: два резервных процессора, запасные микросхемы памяти, альтернативные пути доступа к периферийным устройствам, горячая замена всех элементов вплоть до каналов, плат памяти и центральных процессоров.
Целостность данных. В мейнфреймах используется память с коррекцией ошибок. Ошибки не приводят к разрушению данных в памяти или данных, ожидающих вывода на внешние устройства. Дисковые подсистемы, построенные на основе RAID-массивов с горячей заменой и встроенных средств резервного копирования, защищают от потерь данных.
Рабочая нагрузка. Рабочая нагрузка мейнфреймов может составлять 80–95 % от их пиковой производительности. Для UNIX–серверов, обычно, рабочая нагрузка не может превышать 20–30 % от пиковой загрузки. Операционная система мейнфрейма будет тянуть всё сразу, причём все приложения будут тесно сотрудничать и использовать общие куски ПО.
Пропускная способность. Подсистемы ввода-вывода мейнфреймов разработаны так, чтобы работать в среде с высочайшей рабочей нагрузкой на ввод-вывод данных.
Масштабирование. Масштабирование мейнфреймов может быть как вертикальным, так и горизонтальным. Вертикальное масштабирование обеспечивается линейкой процессоров с производительностью от 5 до 200 MIPS и наращиванием до 12 центральных процессоров в одном компьютере. Горизонтальное масштабирование реализуется объединением ЭВМ в Sysplex (System Complex) — многомашинный кластер, выглядящий с точки зрения пользователя единым компьютером. Всего в Sysplex можно объединить до 32 машин. Географически распределённый Sysplex называют GDPS. В случае использования ОС VM для совместной работы можно объединить любое количество компьютеров. Программное масштабирование — на одном мейнфрейме может быть сконфигурировано фактически бесконечное число различных серверов. Причем все серверы могут быть изолированы друг от друга так, как будто они выполняются на отдельных выделенных компьютерах и в то же время совместно использовать аппаратные и программные ресурсы и данные.
Доступ к данным. Поскольку данные хранятся на одном сервере, прикладные программы не нуждаются в сборе исходной информации из множества источников, не требуется дополнительное дисковое пространство для их временного хранения, не возникают сомнения в их актуальности. Требуется небольшое количество физических серверов и значительно более простое программное обеспечение. Всё это, в совокупности, ведёт к повышению скорости и эффективности обработки.
Защита. Встроенные в аппаратуру возможности защиты, такие как криптографические устройства, и Logical Partition, и средства защиты операционных систем, дополненные программными продуктами RACF или VM:SECURE, обеспечивают совершенную защиту.
Пользовательский интерфейс. Пользовательский интерфейс у мейнфреймов всегда оставался наиболее слабым местом. Сейчас же стало возможно для прикладных программ мейнфреймов в кратчайшие сроки и при минимальных затратах обеспечить современный веб-интерфейс.
Сохранение инвестиций — использование данных и существующих прикладных программ не влечёт дополнительных расходов по приобретению нового программного обеспечения для другой платформы, переучиванию персонала, переноса данных и т.д.
Динамика развития IBM:
Большие универсальные компьютеры IBМ 360 были первыми в мире системами, предназначенными как для коммерческих, так и для научных целей. Эта серия дополнялась в процессе развития еще шестью моделями как среднего, так и высшего (научного) уровня. Модели строились на базе стандартных аппаратурных и программных продуктов и были совместимы сверху вниз, имея единую систему команд.
В начале 1970-х годов IВМ выпустила на рынок новое поколение машин, получивших название IBM 370, совместимых с системой IВМ 360, но использовавших усовершенствованные процессоры, оперативную и внешнюю память. Это позволило расширить их возможности по поддержке одновременно работающих пользователей и более ресурсоемких и динамических приложений. Основные новации IВМ 370 — возможность использования нескольких процессоров в рамках одной системы, полноценная поддержка виртуальной памяти и новый 128-разрядный блок вещественной арифметики. Всего было выпущено около 17 моделей разного уровня. Эти компьютеры использовали специализированные операционный системы: О/360, О/370, МУ ее вариации.
Новое поколение мейнфреймов IBM 390 появилось в начале 1990 г., но сохранило совместимость с предыдущими моделями. В процессе создания IВМ 390 произошло обновление всей электронной базы — МП, ОП и ВЗУ на несколько поколений. В период с 1990 по 1999 г. было выпущено множество разнообразных систем под названием IВМ/390 enterprise server или ЕА/390 (ЕА — Еnterргisе IBM Агсhitecture). Старшие две модели системы с названием «Summit» имели водяное охлаждение, младшие — воздушное.
В 2000 г. название «IBM 390» было заменено на «IВМ server z sегiеs». В октябре был представлен самый мощный на тот период компьютер массового коммерческого применения — z series 900. Тогда же появилась новая 64-разрядная ОС. В 2002 г. было представлено семейство z series 800 для задач среднего уровня, 2003 г. был отмечен появлением новой модели z series — е server z series 990, в 2004 г. появилась новая система среднего уровня series 890.
В середине 2005 г. семейство мейнфреймов пережило очередное переименование. С этого времени все системы этого класса обозначают sуstem z9. Одновременно с этим объявлено о создании новой модели — 109. Эти модели отвечают современным жестким требованиям корпоративных систем по доступности и надежности. Возможность непрерывного профилактического обслуживания (без прерывания работы комплекса) вносит весомый вклад в то, что среднее время наработки на отказ системы series исчисляется десятилетиями, а предложенная IВМ система комплексирования — Рагаllеl Sурlех (традиционные кластеры), характеризуется повышенной живучестью комплекса: его надежность сейчас 99,999 %, что позволяет обслуживать пользователей 24 ч в сутки 365 дней в году.
По мере того, как конфиденциальность становится одним из главных требований бизнеса, поддержка SSL-транзакций (защищенные сетевые протоколы) превращается в определяющий фактор при выборе сервера. IВМ series может работать с восемнадцатью криптографическими сопроцессорами, которые могут обрабатывать несколько тысяч защищенных транзакций в секунду без снижения скорости обработки.