
- •2. Дифференциация нейроэпителиальных клеток на предшественников нервных и глиальных клеток.
- •4. Шесть этапов формирования нервной системы.
- •5. Причины прогрессивного развития нервной системы от диффузной трубчатой.
- •6. А)Подходы к изучению мозга человека. Б)Общий план строения нервной системы. Цнс и периферическая нервная система. В) Какие процессы в организме контролирует нервная система.
- •7. А)Почему необходимы эксперименты на животных?б) Экстирпация – самый древний метод изучения функций мозга. В)Хирургические методы лечения мозга.
- •8. Электрофизиологические методы изучения мозга: микроэлектродный, метод вызванных потенциалов, микроионофорез, стереотаксический метод.
- •9 Участие спинного мозга в формировании периферической нервной системы. Строение и функции спинного мозга.
- •10. Функции: продолговатого мозга, Варолиева моста и мозжечка. Ретикулярная формация
- •11. Функции среднего мозга. Роль красного ядра и черной субстанции в регуляции движений. Роль бугров четверохолмия в формировании ориентировочных рефлексов.
- •12. Таламуса – коллектор афферентных импульсов. Специфические и неспецифические ядра таламуса. Таламус – центр болевой чувствительности.
- •13. Гипоталамо-гипофизарная система. Гипоталамус – центр регуляции эндокринной системы и мотиваций.
- •14. . Нейрон – особенности строения и функций. Отличия нейронов от других клеток. Глия, гематоэнцефалический барьер, цереброспинальная жидкость
- •15. .Афферентные нейроны, их функции и строение. Рецепторы: строение, функции, формирование афферентного залпа.
- •16. Строение и функции эфферентных и промежуточных нейронов, роль мембраны сомы. Дендриты - рецептивное поле нейрона. Роль шипиков.
- •17. Аксон и аксональный транспорт (быстрый и медленный, антероградный и ретроградный). Аксонная терминаль
- •18. Раздражимость и возбудимость. Порог раздражения. Физиология возбудимых мембран Строение мембраны нервной клетки.
- •19. Формирования потенциал покоя и потенциала действия. Критический уровень деполяризации. Рефрактерный период.
- •20. Распространение потенциала действия по миелинизированным и немиелинизированным нервным волокнам. Роль миелиновой оболочки в проведении возбуждения.
- •23. Строение и функции соматической нервной системы. Эфферентное и афферентное звенья соматической нервной системы. Спинальное и супраспинальное управление мотонейронами.
- •24. А) Рефлекторная функция спинного и головного мозга. Б)Работы и.М.Сеченова и и.П.Павлова в развитии рефлекторной теории. В)Открытие торможения.
- •25. А) Двигательные рефлексы спинного мозга. Б)Моно и полисинаптические рефлекторные дуги. В)Коленный рефлекс.
- •26. Механизмы поддержания постоянства внутренней среды организма и регуляция работы внутренних органов.
- •27. Особенности функций симпатической и парасимпатической нервной системы. Строение симпатической нервной системы.
- •28. Строение парасимпатической нервной системы. Регуляция работы сердца.
- •29. А) Вегетативные рефлексы. Б) Рефлексогенные зоны сосудистого русла и их роль в регуляции работы сердца и кровяного давления. В) Роль волюморецепторов и атриумнатрийуретического пептида.
- •30. А)Химическая передача в соматической и вегетативной нервной системе. Б)Работы о.Леви и г.Дейла.
- •33. А)Синаптическая передача в цнс. Медиаторы цнс. Б)Строение химического синапса в цнс. В)Особенности строения и функций везикул. Г)Роль белков в передаче информации.
- •35. Медиаторные системы мозга. Холинергическая система мозга и ее участие в двигательных и вегетативных реакциях, в обучении и памяти. Болезнь Альцгеймера.
- •36. Медиаторные системы мозга. Дофаминергическая система мозга, ее роль в возникновении болезни Паркинсона и шизофрении.
- •37. Аминокислоты-медиаторы цнс: глутамат, глицин, гамк. Гамк-ергическая система и проблемы эпилепсии. Бензодиазепины.
- •38. Норадренергическая и серотонинергическая системы мозга и их участие в обучении с положительным и отрицательным подкреплением.
- •39. Нейросекреция. Нейропептиды-медиаторы и модуляторы синаптической передачи. Сосуществование в одной аксонной терминали нейропептидов и медиаторов. Г)Принцип Дейла и его критика.
11. Функции среднего мозга. Роль красного ядра и черной субстанции в регуляции движений. Роль бугров четверохолмия в формировании ориентировочных рефлексов.
Средний мозг состоит из бугров четверохолмия, красное ядро, черная субстанция, и ядра шва.
Сверху - передние бугры четверохолмия и внизу - задние бугры четверохолмия. Смотрим мы глазами, а видим затылочной корой больших полушарий, где находится зрительное поле, где формируется образ. От глаза отходит нерв, проходит через ряд подкорковых образований, доходит до зрительной коры, зрительной коры нет, и мы ничего не увидим. Передние бугры четверохолмия – это первичная зрительная зона. С их участием возникает ориентировочная реакция на зрительный сигнал. Ориентировочная реакция – это «реакция что такое?» Если разрушить передние бугры четверохолмия зрение сохранится, но будет отсутствовать быстрая реакция на зрительный сигнал. Задние бугры четверохолмия – это первичная слуховая зона. С ее участием возникает ориентировочная реакция на звуковой сигнал. Если разрушить задние бугры четверохолмия- слух сохранится но не будет ориентировочной реакции. Красное ядро – обеспечивает тонус скелетной мускулатуры, перераспределение тонуса при изменении позы. Просто потянуться – это мощная работа головного и спинного мозга, за которую отвечает красное ядро. Красное ядро обеспечивает нормальный тонус нашей мускулатуры. Если разрушить красное ядро возникает децеробрационная регидность, при этом резко повышается тонус у одних животных сгибателей, у других – разгибателей. А при абсолютном разрушении повышается сразу оба тонуса, и все зависит от того какие мышцы сильнее. Черная субстанция – Каким образом возбуждение от одного нейрона передается к другому нейрону? Возникает возбуждение – это биоэлектрический процесс. Он дошел до конца аксона, где выделяется химическое вещество – медиатор. Каждая клетка имеет какой-то свой медиатор. В черной субстанции в нервных клетках вырабатывается медиатор дофамин. При разрушении черной субстанции возникает болезнь Паркенсона (постоянно дрожат пальцы рук, голова, или присутствует скованность в результате того, что к мышцам идет постоянный сигнал) потому, что в мозге не хватает дофамина. Черная субстанция обеспечивает тонкие инструментальные движения пальцев и оказывает влияние на все двигательные функции. Ядра шва – это источник другого медиатора серотонина. Эта структура и этот медиатор принимает участие в процессе засыпания. Если разрушить ядра шва, то животное находится в постоянном состоянии бодрствовании и быстро погибает. Кроме того, серотонин принимает участие в обучении с положительным подкреплением (это когда крысе дают сыр) Серотонин обеспечивает такие черты характера, как незлопамятность, доброжелательность, у агрессивных людей недостаток серотонина в мозге.
12. Таламуса – коллектор афферентных импульсов. Специфические и неспецифические ядра таламуса. Таламус – центр болевой чувствительности.
Таламус – зрительный бугор. Первым обнаружили в нем отношение к зрительным импульсам. Является коллектором афферентных импульсов, тех, что идут от рецепторов. В таламус поступают сигналы от всех рецепторов, кроме обонятельных. На уровне таламуса идет обработка этих сигналов, происходит отбор только наиболее важной для человека в данный момент информации, которая далее поступает в кору. Ядра таламуса делятся на две группы: специфические и не специфические. Через специфические ядра таламуса сигналы поступают строго к определенным зонам коры, например зрительная в затылочную, слуховая в височную долю. А через неспецифические ядра информация поступает диффузно ко всей коре, чтобы повысить ее возбудимость, для того чтобы более четко воспринимать специфическую информацию. Таламус является высшим центром болевой чувствительности. Боль формируется обязательно с участием таламуса, и при разрушение одних ядер таламуса полностью теряется болевая чувствительность, при разрушении других ядер возникают едва переносимые боли (например формируются фантомные боли – боли в отсутствующей конечности).