Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПОСОБИЕ-2.doc
Скачиваний:
33
Добавлен:
24.11.2019
Размер:
11.44 Mб
Скачать

9.5. Другие цветные металлы и сплавы

Бериллий и его сплавы. Бериллий – легкий (1,845 г/см3), пластичный (δ = 140 %) металл светло-серого цвета. Температура плавления – 1287 С. До 1250 С имеет ГПУ решетку, выше – ОЦК. Бериллий чрезвычайно токсичен. Механические свойства бериллия зависят от чистоты металла, технологии производства, размера зерна. Пластичный бериллий (содержание примесей 10-4 %) получают электролизом с последующей зонной плавкой. Бериллий обладает уникальным сочетанием физических и механических свойств. По удельной прочности и жесткости, удельной теплоемкости он превосходит все другие металлы. Бериллий отличается высокой электро- и теплопроводностью. Недостатки – высокая стоимость, сложность переработки, а также низкая хладостойкость и ударная вязкость (ниже 5 Дж/см2). Бериллий плохо обрабатывается резанием. Поэтому для производства заготовок применяют метод порошковой металлургии. Соединения деталей из бериллия получают с использованием пайки, дуговой сварки в аргоне или в вакууме, для предотвращения взаимодействия металла с кислородом.

Сплавы бериллия. Размеры атома бериллия очень малы – 0,226 нм. Поэтому введение даже небольшого количества примесей (например, 0,001 % Si) приводит к значительным искажениям кристаллической решетки бериллия и сильному охрупчиванию металла. Поэтому легирование бериллия возможно только элементами, которые образуют с бериллием механические смеси с минимальной взаимной растворимостью. В сплавах бериллия с алюминием (24–43 % Al) твердые частицы бериллия равномерно распределены в пластичной алюминиевой матрице. Например, сплав локеллой (62 % Be) фирмы «Локхид» (США) имеет следующие механические свойства: в = 600 МПа, δ = 1 %. Для увеличения прочности в сплавы Be–Al дополнительно вводят магний и серебро – элементы, растворимые в алюминиевой матрице. Сплавы бериллия с серебром (до 60 %) дополнительно легируют литием и лантаном.

Цинк и его сплавы. Цинк – синевато-белый металл, температура плавления 419 С, плотность 7,13 г/см3, решетка – ГПУ. Полиморфных превращений не имеет. Чистый цинк обладает высокой пластичностью (δ = 50 %), низкой прочностью (в = 150 МПа). При 100–150 С цинк пластичен и легко прокатывается в листы и фольгу толщиной до сотых долей миллиметра. При 250 С становится хрупким. Основные примеси – свинец, железо, кадмий. Половина производимого цинка расходуется на защитные антикоррозионные покрытия для сталей.

Сплавы на основе цинка характеризуются невысокой температурой плавления, хорошей жидкотекучестью, легко обрабатываются давлением и резанием, хорошо паяются и свариваются. Основные примеси – алюминий (до 5–10 %) и медь (до 5 %). Маркируются буквами Ц (цинк), А (алюминий), М (медь) и цифрами, показывающими содержание элементов в процентах. Сплав ЦАМ4-3 содержит 4 % Al и 3 % Cu.

Свинец и его сплавы. Свинец – металл голубовато-серого цвета, температура плавления 327 С, плотность 11,3 г/см3, решетка ГЦК. Полиморфных превращений не имеет. Свинец обладает высокой пластичностью (δ = 60 %) и очень низкой прочностью (в = 13 МПа). Чистый свинец хорошо поглощает гамма и рентгеновские лучи, поэтому его широко применяют для изготовления защитных экранов и контейнеров для хранения радиоактивных веществ. Много свинца расходуется на защитные оболочки электрических кабелей, для производства аппаратуры, стойкой в агрессивных средах.

Сплавы на основе свинца. Введение Fe, Te, Cu, Sb, Sn, Cd и Ca в небольших количествах, не снижает коррозионную стойкость свинца, но увеличивает его прочность, твердость и антифрикционные свойства, а при нагреве – предел ползучести и длительную прочность.

Сплавы с теллуром (0,03–0,06 %), медью (0,04–0,08 %) и сурьмой (0,5–2 %) используются как материалы для облицовки кислотоупорной аппаратуры и трубопроводов.

Для оболочек электрических кабелей применяют сплавы с теллуром (0,04–0,06 %), кальцием (0,03–0,07 %), оловом (1–2 %) и сурьмой (0,4–0,8 %). Благодаря хорошим литейным свойствам свинцовые сплавы применяются для отливок малого сечения и сложной формы. Для перфорированных пластин свинцовых аккумуляторов используют сплав свинца с сурьмой повышенной прочности (6–9 %).

Олово и его сплавы. Олово – пластичный, ковкий и легкоплавкий блестящий металл серебристо-белого цвета, характеризуется высокой пластичностью (δ = 90 %) и низкой прочностью (в = 17 МПа). Температура плавления 232 С. Белое олово (-олово) с тетрагональной решеткой и плотностью 7,3 г/см3 устойчиво до 18 С, ниже – начинается полиморфное превращение белого в серое олово (-олово) с решеткой подобной решетке алмаза и плотностью 5,85 г/см3. Олово применяется в чистом виде или в сплавах с другими металлами.

Основное промышленные применения олова – безопасное, нетоксичное, коррозионностойкое покрытие в белой жести (луженое железо) и оловянно-свинцовый и оловянно-цинковый припои для электроники. Важнейший сплав олова с медью – бронза. Олово один из главных компонентов при получении конструкционных сплавов титана. Около 33 % добываемого олова используется для изготовления тары пищевых продуктов (посудное олово). Сплав олова (85–99 %) с такими металлами, как медь, сурьма, висмут, свинец называется пьютер (от англ. pewter). Температура плавления (170–230 °C) зависит от процентного содержания компонентов.

Олово марок О1 (99,9 % Sn) и О2 (99,56 % Sn) используется для лужения, О3 (98,35 % Sn) и О4 (96,25 % Sn) – для пайки.

Баббиты названы в честь изобретателя I. Babbitt (1839 г.). Баббиты – антифрикционные сплавы на основе олова или свинца. Используются для изготовления тяжело нагруженных подшипников скольжения. Для получения антифрикционных свойств в баббиты добавляют сурьму, медь, никель, мышьяк, кадмий, теллур, кальций, натрий, магний и др. Баббиты имеют низкие температуры плавления (300–440 °C), хорошую прирабатываемость. Высокие антифрикционные свойства обусловлены гетерогенной структурой баббита, характеризующейся наличием твердых частиц в мягкой пластичной основе сплава.

Баббиты на оловянной основе применяют для подшипников ответственного назначения, когда от антифрикционного материала требуются повышенная вязкость и минимальный коэффициент трения. Оловянный баббит по сравнению со свинцовым обладает более высокой коррозионной стойкостью, износоустойчивостью и теплопроводностью, а также меньшим коэффициентом линейного расширения.

Свинцовые баббиты могут работать при более высокой температуре подшипника, чем оловянные. Свинцовый баббит применяют для заливки подшипников двигателей автомобилей, тракторов, прокатных станов. Свинцово-кальциевый баббит используют для заливки подшипников подвижного состава железнодорожного транспорта.

Тугоплавкие металлы и сплавы. Тугоплавкими называют металлы с температурой плавления выше 2200 С: вольфрам (3410 С), рений (3180 С), тантал (2996 С), молибден (2623 С), ниобий (2468 С), гафний (2222 С), рутений (2334 С) и др. Металлы имеют, в основном, ОЦК решетку и не претерпевают полиморфных превращений.

Тугоплавкие металлы и их сплавы применяют как жаропрочные материалы в авиационной и космической технике. Они имеют низкую жаростойкость, поэтому возникает необходимость использования различных защитных покрытий. Металлы получают плавкой в электродуговых и электронно-лучевых печах; методами порошковой металлургии (с использованием операций прессования и спекания).

Вольфрамовую проволоку диаметром до 15 мм получают предварительной проковкой заготовок с последующим волочением через алмазные фильеры. Конечный диаметр уменьшают до 5 мкм путем протравливания проволоки в кислоте. Вольфрам и молибден используют для изготовления нитей накаливания и электрических контактов. Рений применяется при производстве сверхточных навигационных приборов. Тантал нужен для изготовления пластин и проволоки в костной хирургии. Сплавы вольфрама с 5–20 % рения применяют для изготовления термопар, измеряющих температуру до 3000 С. Карбиды вольфрама, ниобия, тантала обладают высокой твердостью и износостойкостью. Изделия из сплава ниобия и тантала эксплуатируют в агрессивных средах серной или азотной кислот 2–3 года, коррозионно-стойкой стали – всего 2–3 месяца.

Для специальных конструкционных элементов используют псевдосплавы, состоящие из взаимно нерастворимых компонентов с большой разницей в температурах плавления. Спеченный из порошка вольфрама пористый каркас пропитывают при 1200–1500 С второй жидкой составляющей (фазой) – медью или серебром.

Легкоплавкие сплавы – сплавы с температурой плавления ниже температуры плавления их основного компонента – олова (232 С). Металлы с низкой температурой плавления (Pb, Cd, Bi, Zn) образуют с оловом сложные эвтектики. Маркируются такие сплавы буквой Л и цифрой, показывающей температуру плавления сплава в градусах Цельсия: (например, Л199: 8,9 % Zn и Sn).

Широко распространен сплав Вуда на основе висмута Л68 (12,5 % Sn, 25 % Pb, 12,5 % Cd и 50 % Bi). Легкоплавкие сплавы используют в качестве конструкционного материала при изготовлении тепловых предохранителей, небольших отливок в пластмассовых формах и т. д.