
- •1.Физиологическая роль углеводов
- •2. Пищевые источники и потребность организма в углеводах. Переваривание углеводов в желудочно-кишечном тракте. Судьба всосавшихся моносахаридов.
- •4. Гликоген как резервный полисахарид. Глюкостатическая функция печени.
- •5. Глюкоза в крови. Регуляция уровня глюкозы в крови. Роль адреналина, глюкагона, инсулина, тиреоидных гормонов.
- •7) Клиническое значение определения концентрации глюкозы в моче
- •8) Изучение углеводного обмена методом однократной сахарной нагрузки.
- •10) Механизм внутриклеточного окисления глюкозы. Дихотомическое анаэробное окисление углеводов (гликолиз).
- •Суммарное уравнение анаэробного гликолиза.
- •11)Гомеостаз молочной кислоты
- •2. Продукция лактата
- •3. Утилизация лактата
- •4. Молочнокислый ацидоз
- •12) Энергетический эффект распада углеводов и триглицеридов
- •14) Гликолиз
- •21. Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах, при длительном голодании, в период голодания и в период покоя.
- •22.Апотомический путь окисления глюкозы(пентозофосфатный шунт).Окислительный этап.Неокислительный этап.Биологическое значение процесса
- •23. Дефект глюкозо-6-фосфат дегидрогеназы в эритроцитах
- •24.Метаболизм фруктозы.Нарушение метаболизма.Недостаточность фруктокиназы.
- •25.Метаболизм галактозы.Нарушение метаболизма галактозы(дефекты галактокиназы, галактазо-1-фосфатуридилтрансферазы)
- •32. Эйкозаноиды (простагландины, простациклины, тромбоксаны, лейкотриены), био роль, представители.
- •1. Структура и номенклатура простагландинов и тромбоксанов
- •2. Циклооксигеназный путь: синтез простагландинов и тромбоксанов
- •33. Фосфатиды-глицериды. Классификация, структура, био роль.
- •34. Фосфатиды-неглицериды. Классификация, сфингозин-фосфатиды. Био роль.
- •35. Переваривание экзогенных липидов в жкт. Липолитические ферменты: желудочная липаза, панкреатическая липаза, фосфофолипазы, особенности их каталитической активности.
- •41) Сущность b-окисления, химизм реакций, характеристика ферментов.
- •42) Общий энергетический эффект полного окисления. Взаимосвязь окисления жк с процессами тканевого дыхания.
- •43) Особенности окисления ненасыщенных жк. Энергетический эффект окисления.
- •44) Цикл Рэндла.
- •45) Катаболизм фосфолипидов – глицеридов.
- •Вопрос 54
- •Кетонурия
- •51.Представление о биосинтезе холестерина (хс). Роль оксиметилглутарил-КоА-редуктазы в биосинтезе хс. Регуляция процесса биосинтеза хс.
- •53. Кетогенез: химизм реакции. Кетоновые тела (ацетоуксусная кислота, β-оксимасляная кислота, ацетон) и их биологическая роль. Кетолиз (окисление кетоновых тел в тканях).
- •Вопрос 55,56 транспорт жиров из кишечника хиломикронами
- •60)Классификация липопротеинемии по Фридрексону( у кого есть скинте)
- •Вопрос 61 биологические мембраны
- •I. Роль мембран в метаболизме и их разнообразие
- •1. Структура и свойства липидов мембран
- •2. Трансмембранная асимметрия липидов
- •3. Жидкостностъ мембран
- •4. Функции мембранных липидов
4. Молочнокислый ацидоз
Молочнокислый ацидоз может рассматриваться как нарушение равновесия между скоростью продукции лактата в тканях с активным гликолизом и скоростью его утилизации тканями с активным глюконеогенезом. В отношении первичного механизма, ответственного за МКА (т. е. гиперпродукция лактата или его недостаточная утилизация), существуют определенные разногласия.
Молочная кислота является сильной органической кислотой, которая в условиях физиологического рН почти полностью диссоциирует. Отношение лактатных ионов к недиссоцииро-ванной молочной кислоте при рН 7,4 превышает 3000:1. На каждый миллиэквивалент продуцируемой молочной кислоты высвобождается равное количество ионов водорода и лактата. Ионы водорода вначале забуфериваются бикарбонатом и другими буферами, а затем поглощаются при утилизации лактата через глюконеогенез или окисление. Таким образом, поддерживается кислотно-щелочное равновесие. В условиях повышенной продукции молочной кислоты и (или) ее пониженной утилизации буферные системы организма насыщаются избытком водородных ионов. Если этот процесс достаточно выражен, то возникает ацидоз. Клиническая значимость развивающегося МКА зависит от предшествующего процесса, ответственного за накопление молочной кислоты, а также от исходного кислотно-щелочного статуса.
12) Энергетический эффект распада углеводов и триглицеридов
Энергетический эффект какого-либо биологического вещества выражают количеством АТФ, которое можно получить в данном процессе. Расчет энергетического эффекта биохимических процессов, протекающих в анаэробных и аэробных условиях, следует производить по-разному.
Расчет энергетического эффекта гликолиза. Гликолиз - это анаэробный процесс. При расчете энергетического эффекта биохимического процесса в анаэробных условиях следует учитывать:
1) затраты АТФ (как правило, в фосфотрансферазных реакциях);
2) образование АТФ в процессах субстратного фосфорилирования.
В первом этапе гликолиза происходит затрата 2 моль АТФ: на фосфорилирование глюкозы и на фосфорилирование глюкозо-6-фосфата. Еще раз заострим внимание на том, что из 1 моль глюкозы образуется 2 моль 3-фосфоглицеринового альдегида, который вступает во второй этап гликолиза.
Во втором этапе гликолиза можно найти две реакции субстратного фосфорилирования, в которых образуется 2 моль АТФ при распаде 1 моль 3-фосфоглицеринового альдегида. Следовательно, при распаде 2 моль 3-фосфоглицеринового альдегида образуется 4 моль АТФ. Суммируя полученное и затраченное количество АТФ, получаем суммарный энергетический эффект гликолиза - 2 моль АТФ.
Расчет энергетического эффекта полного распада глюкозы в аэробных условиях. При расчете энергетического эффекта биохимического процесса в аэробных условиях следует учитывать:
1) затраты АТФ;
2) образование АТФ в процессах субстратного фосфорилирования;
3) фосфорилирование АДФ, сопряженное с работой электронотранспортной цепи.
Процессы полного распада глюкозы до оксида углерода (IV) и воды разделим на этапы и проведем расчет энергетического эффекта каждого этапа.
Первый этап гликолиза - на этом этапе затрачиваются 2 моль АТФ.
Второй этап гликолиза - 4 моль АТФ получаются в реакциях субстратного фосфорилирования. Фермент 3-фосфоглицеральде-гидцегидрогеназа катализирует отщепление 2 атомов водорода от молекулы субстрата, поставляя их в электронотранспортную цепь; результатом сопряжения окисления с фосфорилированием АДФ является образование 3 моль АТФ на каждый моль 3-фосфоглицеринового альдегида. Поскольку из 1 моль глюкозы образуется 2 моль 3-фосфоглицеринового альдегида, в данном процессе образуется 6 моль АТФ.
Окислительное декарбоксилирование ПВК дает 6 моль АТФ, так как в электронотранспортную цепь водороды поставляют 2 моль НАД.
В цикле Кребса нет затрат АТФ и отсутствуют реакции субстратного фосфорилирования. Однако имеются четыре дегидрогеназные реакции, и в одной реакции образуется ГГФ, которая по выходу энергии эквивалентна АТФ.
Энергетический эффект цикла Кребса
Фермент Кофермент Выход АТФ, моль
Изоцитратдегидрогеназа НАД 3
α-Кетоглутаратдегидрогеназный комплекс НАД 3
Сукцинаттиокиназа ГДФ 1
Сукцинатдегидрогеназа ФАД 2
Малатдегидрогеназа НАД 3
Всего 12
Итак, при распаде 1 моль ацетил-КоА образуется 12 моль АТФ, следовательно, из 2 моль ацетил-КоА - 24 моль АТФ.
Суммируя энергетические эффекты всех этапов распада глюкозы в аэробных условиях, получаем 38 моль АТФ.
Расчет энергетического эффекта распада триглицеридов. При гидролизе триглицеридов не происходит ни затрат, ни образования АТФ. Энергетическую ценность имеют продукты гидролиза - глицерин и высшие жирные кислоты.
13) Ключевые ферменты гликолиза: 1. Гексокиназа — это регуляторный фермент гликолиза во внепеченочных клетках. Гексокиназа аллостерически ингибируется глюкозо-6-фосфатом. Глюкокиназа — регуляторный фермент гликолиза в гепатоцитах. Синтез глюкокиназы индуцируется инсулином. 2. Фосфофруктокиназа-1. Это главный ключевой фермент, катализирует реакцию, лимитирующую скорость всего процесса (наиболее медленная реакция). Синтез фермента индуцируется инсулином. Аллостерические активаторы — АМФ, АДФ, фруктозо-2,6- дифосфат. Уровень фруктозо-2,6-дифосфата увеличивается под действием инсулина и понижается под действием глюкагона. Аллостерические ингибиторы — АТФ, цитрат. 3. Пируваткиназа. Фермент активен в нефосфорилированной форме. Глюкагон (в гепатоцитах) и адреналин (в миоцитах) стимулируют фосфорилирование фермента, а значит инактивируют фермент. Инсулин, наоборот, стимулирует дефосфорилирование фермента, а значит активирует фермент. Аллостерический активатор — Фр-1,6-ФФ. Аллостерический ингибитор — АТФ, ацетил КоА. Синтез фермента индуцирует инсулин. Аллостерическая регуляция аэробного распада глюкозы и глюкогенеза в печени энергетическим статусом клетки
Аллостерическая регуляция скорости гликолиза, зависимая от изменения соотношения АТФ/АДФ, направлена на изменение скорости использования глюкозы непосредственно клетками печени. Глюкоза в клетках печени используется не только для синтеза гликогена и жиров, но также и как источник энергии для синтеза АТФ. Основными потребителями АТФ в гепатоцитах являются процессы трансмембранного переноса веществ, синтез белков, гликогена, жиров, глюконеогенез. От скорости утилизации АТФ в этих процессах зависит скорость его синтеза. АТФ, АДФ и АМФ, а также NAD+ и NADH служат аллостерическими эффекторами некоторых гликолитических ферментов и ферментов глюконеогенеза. В частности, АМФ активирует фосфофруктокиназу и ингибирует фруктозо-1,6-бисфосфатазу. АТФ и NADH ингибируют пируваткиназу, а АДФ активирует пируваткарбоксилазу. Следовательно, при усилении расходования АТФ и снижении его концентрации с одновременным увеличением концентрации АМФ, активируется гликолиз и образование АТФ, а глюконеогенез при этом замедляется. Кроме того, от соотношения АТФ/АДФ, АМФ и NAD/ NADH зависит скорость реакций общего пути катаболизма