
- •1.Физиологическая роль углеводов
- •2. Пищевые источники и потребность организма в углеводах. Переваривание углеводов в желудочно-кишечном тракте. Судьба всосавшихся моносахаридов.
- •4. Гликоген как резервный полисахарид. Глюкостатическая функция печени.
- •5. Глюкоза в крови. Регуляция уровня глюкозы в крови. Роль адреналина, глюкагона, инсулина, тиреоидных гормонов.
- •7) Клиническое значение определения концентрации глюкозы в моче
- •8) Изучение углеводного обмена методом однократной сахарной нагрузки.
- •10) Механизм внутриклеточного окисления глюкозы. Дихотомическое анаэробное окисление углеводов (гликолиз).
- •Суммарное уравнение анаэробного гликолиза.
- •11)Гомеостаз молочной кислоты
- •2. Продукция лактата
- •3. Утилизация лактата
- •4. Молочнокислый ацидоз
- •12) Энергетический эффект распада углеводов и триглицеридов
- •14) Гликолиз
- •21. Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах, при длительном голодании, в период голодания и в период покоя.
- •22.Апотомический путь окисления глюкозы(пентозофосфатный шунт).Окислительный этап.Неокислительный этап.Биологическое значение процесса
- •23. Дефект глюкозо-6-фосфат дегидрогеназы в эритроцитах
- •24.Метаболизм фруктозы.Нарушение метаболизма.Недостаточность фруктокиназы.
- •25.Метаболизм галактозы.Нарушение метаболизма галактозы(дефекты галактокиназы, галактазо-1-фосфатуридилтрансферазы)
- •32. Эйкозаноиды (простагландины, простациклины, тромбоксаны, лейкотриены), био роль, представители.
- •1. Структура и номенклатура простагландинов и тромбоксанов
- •2. Циклооксигеназный путь: синтез простагландинов и тромбоксанов
- •33. Фосфатиды-глицериды. Классификация, структура, био роль.
- •34. Фосфатиды-неглицериды. Классификация, сфингозин-фосфатиды. Био роль.
- •35. Переваривание экзогенных липидов в жкт. Липолитические ферменты: желудочная липаза, панкреатическая липаза, фосфофолипазы, особенности их каталитической активности.
- •41) Сущность b-окисления, химизм реакций, характеристика ферментов.
- •42) Общий энергетический эффект полного окисления. Взаимосвязь окисления жк с процессами тканевого дыхания.
- •43) Особенности окисления ненасыщенных жк. Энергетический эффект окисления.
- •44) Цикл Рэндла.
- •45) Катаболизм фосфолипидов – глицеридов.
- •Вопрос 54
- •Кетонурия
- •51.Представление о биосинтезе холестерина (хс). Роль оксиметилглутарил-КоА-редуктазы в биосинтезе хс. Регуляция процесса биосинтеза хс.
- •53. Кетогенез: химизм реакции. Кетоновые тела (ацетоуксусная кислота, β-оксимасляная кислота, ацетон) и их биологическая роль. Кетолиз (окисление кетоновых тел в тканях).
- •Вопрос 55,56 транспорт жиров из кишечника хиломикронами
- •60)Классификация липопротеинемии по Фридрексону( у кого есть скинте)
- •Вопрос 61 биологические мембраны
- •I. Роль мембран в метаболизме и их разнообразие
- •1. Структура и свойства липидов мембран
- •2. Трансмембранная асимметрия липидов
- •3. Жидкостностъ мембран
- •4. Функции мембранных липидов
32. Эйкозаноиды (простагландины, простациклины, тромбоксаны, лейкотриены), био роль, представители.
Эйкозаноиды, включающие в себя простагландины, тромбоксаны, лейкотриены и ряд других веществ, - высокоактивные регуляторы клеточных функций. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как "гормоны местного действия", влияя на метаболизм продуцирующей их клетки по аугокзэинному механизму, и на окружающие клетки - по паракринному механизму. Эйкозаноиды участвуют во многих процессах: регулируют тонус ГМК и вследствие этого влияют на АД, состояние бронхов, кишечника, матки. Эйкозаноиды регулируют секрецию воды и натрия почками, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Такие признаки воспаления, как боль, отёк, лихорадка, в значительной мере обусловлены действием эйкозаноидов. Избыточная секреция эйкозаноидов приводит к ряду заболеваний, например бронхиальной астме и аллергическим реакциям.
А. Субстраты для синтеза эйкозаноидов
Главный субстрат для синтеза эйкозаноидов у человека - арахидоновая кислота (20:4, ω-6), так как её содержание в организме человека значительно больше остальных полиеновых кислот-предшественников эйкозаноидов (см, выше табл. 8-1).
В меньшем количестве для синтеза эйкозаноидов используются эйкозапентаеновая (20:5, ω-3) и эйкозатриеновая (20:3, ω-6) жирные кислоты.
Полиеновые кислоты с 20 атомами углерода поступают в организм человека с пищей или образуются из незаменимых (эссенциальных) жирных кислот с 18 атомами углерода, также поступающими с пищей (рис. 8-44).
Полиеновые жирные кислоты, которые могут служить субстратами для синтеза эйкозаноидов, входят в состав глицерофосфолипидов
Рис. 8-44. Синтез полиеновых жирных кислот с 20 углеродными атомами в организме человека.
мембран. Под действием ассоциированной с мембраной фосфолипазы А2 жирная кислота отщепляется от глицерофосфолипида и используется для синтеза эйкозаноидов.
Б. Структура, номенклатура и биосинтез простагландинов и тромбоксанов
Хотя субстраты для синтеза эйкозаноидов имеют довольно простую структуру (полистовые жирные кислоты), из них образуется большая и разнообразная группа веществ. Наиболее распространены в организме человека простагландины, которые впервые были выделены из предстательной железы, откуда и получили свое название. Позже было показано, что и другие ткани организма синтезируют простагландины и другие эйкозаноиды.
1. Структура и номенклатура простагландинов и тромбоксанов
Простагландины (рис. 8-45) обозначают символами, например PG А, где PG обозначает слово "простагландин", а буква А обозначает заместитель в пятичленном кольце в молекуле эйкозаноида.
Каждая из указанных групп простагландинов состоит из 3 типов молекул, отличающихся по числу двойных связей в боковых цепях. Число двойных связей обозначают нижним цифровым индексом, например, PG Е2.
Число двойных связей в боковых цепях простагландинов зависит от структуры предшественника - полистовой кислоты, из которой образовались простагландины. Две двойные связи полиеновой кислоты используются при образовании кольца в молекуле простагландина, а количество оставшихся двойных связей в радикалах, связанных с кольцом, определяет серию простагландина: 1 - если одна двойная связь, 2 - если две двойные связи и 3 - если в радикалах имеются три двойных связи.
PG I - простациклины. Имеют 2 кольца в своей структуре: одно пятичленное, как и другие простагландины, а другое - с участием атома кислорода. Их также подразделяют в зависимости от количества двойных связей в радикалах (PG I2, PG I3).
Тромбоксаны. В отличие от простагландинов, тромбоксаны синтезируются только в тромбоцитах, откуда и происходит их название, и стимулируют их агрегацию при образовании тромба.
Тромбоксаны имеют шестичленное кольцо, включающее атом кислорода (рис. 8-46). Так же, как и другие эйкозаноиды, тромбоксаны могут содержать различное число двойных связей в боковых цепях, образуя ТХ А2, или ТХ A3, отличающиеся по активности. ТХ В2 - продукт катаболизма ТХ А2 и активностью не обладает.