
- •1.Физиологическая роль углеводов
- •2. Пищевые источники и потребность организма в углеводах. Переваривание углеводов в желудочно-кишечном тракте. Судьба всосавшихся моносахаридов.
- •4. Гликоген как резервный полисахарид. Глюкостатическая функция печени.
- •5. Глюкоза в крови. Регуляция уровня глюкозы в крови. Роль адреналина, глюкагона, инсулина, тиреоидных гормонов.
- •7) Клиническое значение определения концентрации глюкозы в моче
- •8) Изучение углеводного обмена методом однократной сахарной нагрузки.
- •10) Механизм внутриклеточного окисления глюкозы. Дихотомическое анаэробное окисление углеводов (гликолиз).
- •Суммарное уравнение анаэробного гликолиза.
- •11)Гомеостаз молочной кислоты
- •2. Продукция лактата
- •3. Утилизация лактата
- •4. Молочнокислый ацидоз
- •12) Энергетический эффект распада углеводов и триглицеридов
- •14) Гликолиз
- •21. Регуляция содержания глюкозы в крови в абсорбтивном и постабсорбтивном периодах, при длительном голодании, в период голодания и в период покоя.
- •22.Апотомический путь окисления глюкозы(пентозофосфатный шунт).Окислительный этап.Неокислительный этап.Биологическое значение процесса
- •23. Дефект глюкозо-6-фосфат дегидрогеназы в эритроцитах
- •24.Метаболизм фруктозы.Нарушение метаболизма.Недостаточность фруктокиназы.
- •25.Метаболизм галактозы.Нарушение метаболизма галактозы(дефекты галактокиназы, галактазо-1-фосфатуридилтрансферазы)
- •32. Эйкозаноиды (простагландины, простациклины, тромбоксаны, лейкотриены), био роль, представители.
- •1. Структура и номенклатура простагландинов и тромбоксанов
- •2. Циклооксигеназный путь: синтез простагландинов и тромбоксанов
- •33. Фосфатиды-глицериды. Классификация, структура, био роль.
- •34. Фосфатиды-неглицериды. Классификация, сфингозин-фосфатиды. Био роль.
- •35. Переваривание экзогенных липидов в жкт. Липолитические ферменты: желудочная липаза, панкреатическая липаза, фосфофолипазы, особенности их каталитической активности.
- •41) Сущность b-окисления, химизм реакций, характеристика ферментов.
- •42) Общий энергетический эффект полного окисления. Взаимосвязь окисления жк с процессами тканевого дыхания.
- •43) Особенности окисления ненасыщенных жк. Энергетический эффект окисления.
- •44) Цикл Рэндла.
- •45) Катаболизм фосфолипидов – глицеридов.
- •Вопрос 54
- •Кетонурия
- •51.Представление о биосинтезе холестерина (хс). Роль оксиметилглутарил-КоА-редуктазы в биосинтезе хс. Регуляция процесса биосинтеза хс.
- •53. Кетогенез: химизм реакции. Кетоновые тела (ацетоуксусная кислота, β-оксимасляная кислота, ацетон) и их биологическая роль. Кетолиз (окисление кетоновых тел в тканях).
- •Вопрос 55,56 транспорт жиров из кишечника хиломикронами
- •60)Классификация липопротеинемии по Фридрексону( у кого есть скинте)
- •Вопрос 61 биологические мембраны
- •I. Роль мембран в метаболизме и их разнообразие
- •1. Структура и свойства липидов мембран
- •2. Трансмембранная асимметрия липидов
- •3. Жидкостностъ мембран
- •4. Функции мембранных липидов
22.Апотомический путь окисления глюкозы(пентозофосфатный шунт).Окислительный этап.Неокислительный этап.Биологическое значение процесса
Пентозофосфатный путь,называемый также гексомонофосфатным шунтом, служит альтернативным путём окисления глюкозо-6-фосфата. Пентозофосфатный путь состоит из 2 фаз (частей) - окислительной и неокислительной ЗначениеПентозофосфатный путь обеспечивает клетки рибозой для синтеза пуриновых и пиримидиновых нуклеотидов и гидрированным ко-ферментом NADPH, который используется в восстановительных процессах. Суммарное уравнение пентозофосфатного пути выражается следующим образом: 3 Глюкозо-6-фосфат + 6 NADP+ → 3 СО 2 + 6 (NADPH + Н +) + 2 Фруктозо-6-фосфат + Глицеральдегид- 3 -фосфат. Наиболее активно Пентозофосфатный путь протекает в жировой ткани, печени, коре надпочечников, эритроцитах, молочной железе в период лактации, семенниках. А. Окислительный этап В окислительной части пентозофосфатного пути глюкозо-6- фосфат подвергается окислительному декарбоксилированию, в результате которого образуются пентозы. Первая реакция дегидрирования - превращение глюкозо-6-фосфата в глюконолактон-6-фосфат - катализируется МАDР +-зависимой глюкозо-6 фосфатдегидрогеназой и сопровождается окислением альдегидной группы у первого атома углерода и образованием одной молекулы восстановленного кофермента NADPH. Далее глюконолактон-6-фосфат быстро превращается в 6- фосфоглюконат при участии фермента глюконолактонгидратазы. Фермент 6- фосфоглюконатдегидрогеназа катализирует вторую реакцию дегидрирования окислительной части, в ходе которой происходит также и декарбоксилирование. При этом углеродная цепь укорачивается на один атом углерода, образуется рибулозо-5-фосфат и вторая молекула гидрированного NADPH .Восстановленный NADPH ингибирует первый фермент окислительного этапа пентозофосфатного пути. Превращение NADPH в окисленное состояние NADP+ приводит к ослаблению ингибирования фермента. При этом скорость соответствующей реакции возрастает, и образуется большее количество NADPH. Реакции окислительного этапа служат основным источником NADPH в клетках. Гидрированные коферменты снабжают водородом биосинтетические процессы, окислительно-восстановительные реакции, включающие защиту клеток от активных форм кислорода. NADPH как донор водорода участвует в анаболических процессах, например в синтезе холестерина. Это источник восстановительных эквивалентов для цитохрома Р 450 , катализирующего образование гидроксильных групп при синтезе стероидных гормонов, жёлчных кислот, при катаболизме лекарственных веществ и других чужеродных соединений. Высокая активность фермента глюкозо-6- фосфатдегидрогеназы обнаружена в фагоцитирующих лейкоцитах, где NADPH-оксидаза использует восстановленный NADPH для образования супероксидного иона из молекулярного кислорода. Супероксидный ион генерирует другие активные формы кислорода, под действием которых и повреждаются молекулы ДНК, белков, липидов бактериальньж клеток. Б. Неокислительный этап Неокислительный этап пентозофосфатного пути включает серию обратимых реакций, в результате которых рибулозо-5-фосфат превращается в рибозо-5-фосфат и ксилулозо-5-фосфат, и далее за счёт переноса углеродных фрагментов в метаболиты гликолиза - фруктозо-6- фосфат и глицеральдегид-3-фосфат. В этих превращениях принимают участие ферменты: эпимераза, изомераза, транскетолаза и трансальдолаза. Неокислительный этап пентозофосфатного пути не включает реакции дегидрирования и поэтому используется только для синтеза пентоз. Рибулозо-5-фосфат служит субстратом для двух ферментов. Фермент рибулозо-5-фосфат-З- эпимераза изменяет стехиометрическое положение одной ОН-группы у третьего атома углерода, превращая рибулозо-5-фосфат в ксилулозо-5-фосфат. Другой фермент - рибулозо-5-фосфатизомераза - катализирует превращение рибулозо-5-фосфата в рибозо-5-фосфат Рибозо-5-фосфат, образующийся в неокислительной фазе, обеспечивает клетки рибозой, необходимой для синтеза нуклеотидов, которые служат предшественниками и структурными компонентами ко-ферментов дегидрогеназ и нуклеиновых кислот. Ферменты транскетолаза и трансальдолаза катализируют перенос двух- и трёхуглеродных фрагментов, соответственно используя в качестве донора углеродных фрагментов кетозу, а альдозу - в качестве акцептора. Эти реакции протекают в 2 этапа: сначала происходит отщепление углеродного фрагмента от молекулы-донора, -а затем - перенос этого фрагмента на молекулу, выполняющую роль акцептора. Транскетолаза в неокислительной фазе пентозофосфатного пути катализирует 2 реакции. В первой реакции) транскетолаза расщепляет связь С-С между кетогруппой и соседним атомом углерода в молекуле ксилулозо-5-фосфат, в результате чего кетосахар превращается в альдозу, глицеральдегид-3-фосфат, содержащую на 2 атома углерода меньше. Образующийся после расщепления двухуглеродный фрагмент остаётся ковалентно связанным в каталитическом центре фермента с ко- ферментом тиаминдифосфатом. Далее фермент переносит двухуглеродный фрагмент на альдегидную группу альдосахара, образую новую кетозу - седргептулозо-7-фосфат. Трансальдолаза переносит трёхуглеродный фрагмент от седогептулозо-7-фосфата на глицеральдегид-3-фосфат, образуя эритрозо-4-фосфат и фруктозо-6- фосфат Эта реакция подобна реакции альдольного расщепления гликолитического пути, за исключением того, что в данном случае трёхуглеродный фрагмент, содержащий кетогруппу, переносится на альдосахар глицеральдегид-3- фосфат, а в гликолитическом пути кетофрагмент высвобождается в виде дигидроксиацетонфосфата. В следующей реакции, катализируемой транс-кетолазой, происходит перенос двухуглеродного фрагмента от ксилулозо-5-фосфата на эритрозо-4-фосфат. Продуктами этой реакции являются фруктозо-6-фосфат и глицеральдегид-3-фосфат . Так как все реакции неокислительного этапа обратимы, образование рибозо-5-фосфата может происходить не только в результате изомерного превращения продукта окислительной фазы пентозофосфатного пути рибулозо-5- фосфата в рибозо-5-фосфат под действием изомеразы, но также и из промежуточных продуктов гликолиза - фруктозо-6-фосфата и глицеральдегид-3-фосфата.