Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Авиамат.Лаборат. практикум .doc
Скачиваний:
10
Добавлен:
20.11.2019
Размер:
20.28 Mб
Скачать

Контрольные вопросы

  1. Какие способы упрочнения титановых сплавов вы знаете?

  2. Как классифицируются легирующие элементы в зависимости от их влияния на аллотропические превращения в титане?

  3. Как классифицируются титановые сплавы по структуре в равновесном состоянии? Каковы свойства и где используются сплавы разных классов?

  4. Дайте определение и характеристику закалочных структур в титановых сплавах.

  5. Какие превращения происходят в закалочных структурах титановых сплавов при старении?

  6. Как выбираются режимы нагревания титановых сплавов для закалки и при старении? Почему нагрев для закалки и закалку необходимо проводить в вакууме?

Лабораторная работа № 10 Термическая обработка деформируемых алюминиевых сплавов Цель работы

1. Ознакомиться с основами теории и практики термической обработки алюминиевых сплавов.

2. Экспериментально выполнить закалку термически упрочня­емого алюминиевого сплава, оценить влияние закалки на свойства сплава.

3. Экспериментально исследовать изменение свойств сплава после закалки и естественного старения в течение различных пе­риодов времени, если сплав поддается естественному старению, а также провести искусственное старение, определив оптимальную температуру старения при постоянном времени и оптимальное вре­мя старения при постоянной температуре.

4. Выявить, изучить с помощью оптического микроскопа и за­рисовать структуру типичных алюминиевых сплавов в различном со­стоянии, указав фазовый состав, свойства и применение этих спла­вов.

Содержание работы

Чистый алюминий  легкий металл ( = 2,7 т/м3) с низкой температурой плавления (660С). Кристаллическая решетка  ГЦК с периодом

а = 4,041 кХ. Алюминий не имеет аллотропических моди­фикаций, обладает высокой теплопроводностью, электропроводнос­тью и очень высокой скрытой теплотой плавления. Это химически активный металл, но образующаяся на его поверхности плотная окисная пленка из Аl203 предохраняет его от коррозии.

Характерные свойства алюминия  высокая пластичность и ма­лая прочность. В зависимости от степени чистоты алюминий имеет предел прочности в = 60...150 МПа, относительное удлинение при разрыве  = 40%, модуль упругости Е =7104 МПа.

В качестве конструкционных материалов применяют в основном сплавы алюминия с различными легирующими элементами, которые в зависимости от степени легированности и способов производства из них деталей мо­гут быть деформируемыми и литейными. Кроме того, сплавы подразделяются на термически неупрочняемые и термически упрочняемые.

К термически неупрочняемым сплавам относят в основном сплавы алюминия с магнием, марганцем, кремнием; к термичес­ки упрочняемым  сплавы системы AlCu, AlZnCuMg, AlMgLi, AlBeMg и др.

Возможность упрочнения путем закалки основана, как правило, на переменной в зависимости от температуры растворимости легиру­ющих элементов в алюминии. Это позволяет при нагреве растворить в алюминии значительную часть легирующих элементов, а при после­дующем быстром охлаждении зафиксировать пересыщенный твердый раствор, что сопровождается упрочнением. Иногда дополнительное существенное упрочнение может быть получено при старении зака­ленных сплавов.

Процессы, протекающие в термически упрочняемых алюминиевых сплавах при закалке и старении, рассмотрим на примере термооб­работки сплавов алюминия с медью типа дуралюминов, например Д1. Состав сплава Д1  Аl + 3,8... 4,8% Сu + 0,4... 0,8% Мg + 0,4...0,8% Мn. Диаграмма состояния Al  Сu(СuАl2) показана на рис. 10.1, а схема закалки и старения дуралюмина – на рис. 10.3.

Рис. 10.1. Диаграмма состояния Al - Сu(СuАl2)

и интервал закалочных температур

Как видно из рис. 10.1, при комнатной температуре в алюминии растворяется 0,2% меди. Максимальная растворимость меди в алюминии при температуре 548°С (точка Е) составляет 5,7%. Все сплавы с содержанием меди до 5,7% путем нагрева выше линии GЕ могут быть переведены в однофазное состояние. В равновесии в этих сплавах при комнатной температуре структура состоит из -твердого раствора меди в алюминии и интерметаллидной фазы СuАl2 (-фаза) (рис.10.2).

Температура нагрева дуралюмина под закалку выбирается так, чтобы при нагреве распалась -фаза и вся медь перешла в -твердый раствор в алюминии. На диаграмме рис. 10.1 эта темпе­ратура выше линии GЕ. При довольно большом содержании в спла­ве меди его легко перегреть выше линий АЕ. Это приведет к нача­лу плавления сплава, что недопустимо. Поэтому температуру на­грева сплава под закалку выдерживают с жестким допуском (для дуралюмина Д1 – 500 + 5°С). Наиболее стабильные результаты получаются при нагреве деталей в расплаве солей. Закалка дета­лей из дуралюмина проводится в воде.

Рис. 10.2. Микроструктура деформированного отоженного