
- •Содержание
- •Введение и методические рекомендации
- •Лабораторная работа № 1
- •Определение механических свойств конструкционных
- •Материалов путем испытания их на растяжение
- •Цель работы
- •Содержание работы
- •1 Плоский; 2 цилиндрический
- •Диаграмма деформации при растяжении
- •Предел упругости 0,05 , как и предел пропорциональности, определяется расчетным или графическим способом.
- •Порядок выполнения работы
- •Лабораторная работа № 2 Определение твердости металлов и сплавов Цель работы
- •Содержание работы
- •Метод Бринелля
- •Порядок выполнения работы
- •Метод Роквелла
- •Порядок выполнения работы
- •Макроструктурный анализ металлов и сплавов
- •Исследование макроструктуры сплавов с применением травления
- •Задание и методические рекомендации
- •Микроструктурный анализ металлов и сплавов
- •Приготовление микрошлифов
- •Устройство металлографического микроскопа
- •Увеличения при рациональных комбинациях объективов и окуляров микроскопа мим-7
- •Вспомогательные устройства микроскопа
- •Задание и методические рекомендации
- •Контрольные вопросы
- •Лабораторная работа № 4 Пластическая деформация и рекристаллизация металлов Цель работы
- •Содержание работы
- •Атомно-кристаллическое строение металлов
- •Механизм пластической деформации монокристаллов
- •Пластическая деформация поликристалла
- •Пластическая деформация и упрочнение металла
- •Влияние нагрева на свойства деформированных металлов и сплавов
- •Холодная и горячая обработка металлов давлением (деформация)
- •Задание и методические рекомендации
- •Контрольные вопросы
- •Содержание работы
- •Некоторые положения теории сплавов
- •Правила построения диаграмм состояния
- •Диаграмма состояния сплавов, компоненты которых не растворяются друг в друге в твердом состоянии
- •Диаграмма состояния сплавов с неограниченной растворимостью компонентов друг в друге в твердом состоянии
- •Диаграмма состояния сплавов с ограниченной растворимостью компонентов друг в друге в твердом состоянии
- •Задание и методические рекомендации
- •Контрольные вопросы
- •Цель работы
- •Теоретические сведения
- •Компоненты и фазы в системе «железоуглерод»
- •Диаграмма состояния «железо–цементит»
- •Влияние углерода на строение и свойства сталей
- •Структура, свойства и применение чугунов
- •Задание и методические рекомендации
- •Контрольные вопросы
- •Лабораторная работа № 7 Термическая обработка углеродистых сталей
- •Определение режимов нагрева сталей под закалку
- •Задание и методические рекомендации
- •Лабораторная работа № 8 Особенности упрочняющей термической обработки легированных сталей
- •Влияние легирования на структуру и свойства сталей
- •Особенности закалки и отпуска легированных сталей по сравнению с углеродистыми
- •Нормализация сталей и классификация сталей по структуре после нормализации
- •Влияние легирования на прокаливаемость сталей
- •Задание и методические рекомендации
- •Контрольные вопросы
- •Содержание работы
- •Классификация легирующих элементов в зависимости от их влияния на температуру аллотропического превращения в титане
- •Классификация титановых сплавов по структуре в равновесном состоянии. Особенности применения сплавов
- •Фазовые превращения в титановых сплавах при закалке и старении
- •Превращения в сплавах при закалке
- •Превращения в закаленных сплавах при старении
- •Задание и методические рекомендации
- •Контрольные вопросы
- •Лабораторная работа № 10 Термическая обработка деформируемых алюминиевых сплавов Цель работы
- •Содержание работы
- •Дуралюмина д1, х150.
- •Задание и методические рекомендации
- •Контрольные вопросы
- •Библиографический список
Диаграмма состояния «железо–цементит»
На диаграмме состояния «железо–цементит» приведены фазовый состав и структура сплавов с концентрацией углерода от 0 до 6,67% (рис. 6.2).
Область перитектического превращения в районе температуры плавления чистого железа условно не показана.
Линия АСD – линия ликвидус, линия начала кристаллизации сплавов. Выше этой линии все сплавы находятся в жидком состоянии.
Линия АECF – линия солидус, линия конца кристаллизации сплавов. Ниже этой линии все сплавы находятся в твердом состоянии.
Линии АС и DС показывают температуры начала кристаллизации аустенита (АС) и первичного цементита (DС). При выделении из жидкой фазы кристаллов аустенита состав жидкой фазы будет обогащаться углеродом и по мере снижения температуры изменяться по линии АС. Состав твердой фазы (аустенита) при этом будет обогащаться углеродом и изменяться по линии АE. При выделении из жидкой фазы кристаллов первичного цементита состав ее будет обедняться углеродом и с понижением температуры изменяться по линии DС. Состав твердой фазы (цементита) остается постоянным. Количество углерода в цементите – 6,67%.
При достижении температуры 1147С состав жидкой фазы для любого сплава, расположенного между концентрациями от точки Е (2,14% С) до точки F (6,67% С), будет соответствовать точке С (4,3% С). При этой температуре оставшаяся часть жидкой фазы данного состава кристаллизуется при постоянной температуре с образованием эвтектической механической смеси, содержащей то же количество углерода, что и жидкость, т.е. 4,3%. Эта эвтектика называется ледебуритом. Она состоит из аустенита состава точки Е (2,14% С) и цементита состава точки F (6,67% С) Ж.ФС ЛС(АЕ + Fe3C). Линия ЕСF обозначает постоянную температуру образования эвтектики ледебурита и температуру конца кристаллизации сплавов, содержащих углерода более 2,14%. Эта линия называется линией эвтектического превращения. Структура сплава, содержащего 4,3% углерода, будет состоять только из ледебурита. В сплавах, расположенных левее точки С, в избытке будет находиться аустенит и структура их после затвердевания будет состоять из первичных кристаллов аустенита и ледебурита; для сплавов, расположенных правее точки С в избытке будет находиться цементит, поэтому структура этих сплавов после затвердевания состоит из первичных кристаллов цементита и ледебурита.
Сплавы, расположенные левее точки Е, после окончания процесса кристаллизации (область АESG) имеют структуру аустенита.
При дальнейшем охлаждении затвердевших железоуглеродистых сплавов ниже линии АECF (линия солидус) происходят процессы, связанные с изменением растворимости углерода в железе и , а также процессы, которые обуславливаются полиморфным превращением железа.
Линия GS показывает температуру начала превращения аустенита в феррит. В сплавах, находящихся левее точки S, при понижении температуры ниже линии GS из аустенита будут выделяться кристаллы феррита.
Линия ЕS представляет собой линию изменения предельной растворимости углерода в аустените в зависимости от температуры. При охлаждении ниже этой линии происходит выделение из аустенита вторичного цементита, а при нагреве на этой линии заканчивается распад вторичного цементита и растворение углерода в аустените. Состав аустенита при понижении температуры будет все время изменяться: в сплавах, находящихся левее точки S, - обогащаться углеродом и изменяться по линии GS; в сплавах, находящихся правее точки S, - обедняться углеродом и изменяться по линии ES.
Ниже линии SECF во всех сплавах при охлаждении из аустенита будет выделяться вторичный цементит по закону линии ES.
При достижении в процессе охлаждения сплавов температуры 727С состав аустенита для всех сплавов будет соответствовать точке S (0,8% С). При этой температуре аустенит будет превращаться в эвтектоидную механическую смесь, состоящую из феррита и цементита, которая называется перлитом: АS ПS (ФP + Fe3C).
Следовательно, линия PSK показывает постоянную температуру образования перлита (эвтектоида) при охлаждении. Линия PSK называется линией эвтектоидного, или перлитного, превращения.
Образование перлита протекает при строго определенной постоянной температуре (727С). Структура сплава, содержащего 0,8% углерода, ниже 727С будет состоять из перлита. В сплавах, расположенных левее точки S, в избытке будет находиться феррит. Структура таких сплавов состоит из феррита и перлита. Количество феррита увеличивается с уменьшением содержания углерода в сплаве. В сплавах, расположенных правее точки S, в избытке будет находиться цементит. С увеличением содержания углерода количество цементита будет расти. Структура этих сплавов будет состоять из перлита и вторичного цементита (от 0,8 до 2,14% С), при этом вторичный цементит выделяется по границам зерен в виде цементитной сетки; перлита, вторичного цементита и ледебурита (от 2,14 до 4,3% С); ледебурита
(4,3% С); первичного цементита и ледебурита (от 4,3 до 6,67% С).
Линия GP показывает температуру конца превращения аустенита в феррит. При охлаждении железоуглеродистых сплавов ниже линии PSK из феррита при понижении температуры будет выделяться третичный цементит. Это связано с уменьшением растворимости углерода в -железе.
ис.
6.2. Диаграмма состояния «железо-цементит»
Линия PQ показывает температуру начала выделения третичного цементита из феррита. Третичный цементит может присутствовать во всех сплавах, содержащих более 0,006% С, однако как отдельная фаза он находится только в сплавах, содержащих от 0,006 до 0,02% С.
На рис. 6.3 показана диаграмма состояния системы «железоцементит» и приведен ряд сплавов с различной концентрацией углерода. Описание процессов, протекающих в сплавах при их охлаждении из жидкого состояния, приведено в табл. 6.1.