
- •Содержание.
- •Введение
- •Модели систем массового обслуживания
- •Предметная область теории телетрафика
- •Информационные процессы и конфликты обслуживания
- •Основные определения теории систем массового обслуживания
- •Модели потока требований
- •Нестационарный пуассоновский поток.
- •Примитивный поток.
- •Поток с ограниченным последействием.
- •Поток Эрланга
- •Поток освобождений серверов.
- •Модели систем массового обслуживания.
- •Математическое введение в теорию цепей Маркова. (Markov’s chain )
- •Классификация систем массового обслуживания.
- •Формула Литтла (Little).
- •Анализ систем массового обслуживания с марковскими потоками требований.
- •Система м/m/1. Анализ.
- •Cистема с конечным накопителем: m/m/1:n
- •Система с несколькими серверами: m/m/m
- •Система обслуживания с m серверами и с явными потерями: m/m/m:Loss
- •Система обслуживания m/m/m:k/m конечное число источников нагрузки, m серверов и конечный накопитель.
- •Система типа m/m/m:m.
- •Вероятность занятия серверов.
- •Сравнительные характеристики моделей Эрланга и Энгсета
- •Примеры анализа систем связи.
- •Системы с неполнодоступным включением серверов.
- •Основы марковской теории сетей массового обслуживания.
- •Анализ систем массового обслуживания без явных потерь.
- •Анализ сетей массового обслуживания с блокировками. Метод вероятностных графов Ли.
- •Анализ и оптимизация коммутационных систем
- •Анализ систем с произвольным законом распределения времени обслуживания
- •Сравнение характеристик качества обслуживания в сетях с коммутацией каналов и коммутацией пакетов.
- •Анализ времени доставки сообщений в сети с коммутацией каналов.
- •Анализ времени доставки сообщений в сетях с коммутацией пакетов.
- •Анализ характеристик каналов с интеграцией речи и данных
- •Метод производящих функций
- •Модели интеграции речи и данных.
- •Интеграция на основе обслуживания в порядке поступления.
- •Интеграция с абсолютным приоритетом.
- •Интеграция на основе стратегии подвижной границы.
- •Система типа g/g/1.
- •Анализ систем массового обслуживания с приоритетами
- •Дисциплины обслуживания. Модель с приоритетами.
- •Основная модель расчета среднего времени ожидания
- •Дисциплины обслуживания с приоритетами, зависящими от времени
- •Оптимизация назначения приоритетов
- •Список используемой литературы.
Интеграция на основе обслуживания в порядке поступления.
При этой стратегии обслуживания контроллер, показанный на рис. 5.1, назначает канал (временной слот) любому пользователю при его появлении независимо от класса нагрузки. При отсутствии свободного канала запросы на соединение блокируются, а пакеты помещаются в буфер. Найдем точное решение задачи определения характеристик качества обслуживания интегральной сети с такой стратегией интеграции. Приемлемая сложность задачи получается для простейшего случая разделения ресурса в виде одного N=1 канала. Однако, несмотря на простоту случая, он позволяет проследить все важнейшие особенности рассматриваемого способа объединения. Для более общего случая с большим числом каналов N будут приведены приближенные формулы.
Рис. 5.1 Модель с непрерывным временем; интеграция нагрузки с коммутацией каналов и коммутацией пакетов.
Построим диаграмму переходов состояний системы массового обслуживания, соответствующей рассматриваемой задаче. СМО имеет двумерную структуру пространства состояний (См. рис.5.2). Обозначим стационарные вероятности нахождения системы в каждом из состояний pij . Верхний ярус состояний i=1 соответствует случаю занятости канала заявкой первого класса, а нижний ярус i=0 описывает состояния без наличия заявки первого класса. Значение j определяет число заявок второго класса, находящихся в системе. Переходы между состояниями в точности соответствуют возможным процессам в системе. Так при занятости канала заявкой первого класса, его освобождение происходит с интенсивностью μ1 в состояние, определяемое числом заявок второго класса, находящихся на обслуживании. Поступление новой заявки второго класса производит переход в состояние с j+1 с интенсивностью λ2, а ее обслуживание производит переход в состояние с j-1 с интенсивностью μ2, но только в случае отсутствия заявки первого класса (i=0).
Рис. 5.2 Диаграмма состояний интегральной схемы; обслуживание в порядке поступления; N=1 канал.
Выпишем уравнения баланса для всех состояний.
Обозначая как обычно ρ1=λ1/μ1, ρ2=λ2/μ2 и используя уравнения (1) и (2) можно получить выражения для вероятностей состояний
где
- коэффициент, определяющий соотношение
между длительностью заявок первого и
второго класса.
Для определения вероятностей при i=0 воспользуемся методом производящих функций. Определим производящую функцию
.
Умножим правую и левую часть уравнения (2) на zj и, суммируя по всем j, начиная с единицы, можно получить следующее алгебраическое уравнение для функции комплексной переменной – производящей функции
При выводе этих уравнений использовались следующие вспомогательные соотношения
В уравнении для G0(z) в правой и левой части может быть выделен сомножитель (z-1). После сокращения на него можно записать выражение для производящей функции
.
Единственным неизвестным остается вероятность в нулевой точке. Воспользуемся условием нормировки и свойством производящей функции
Теперь мы можем найти характеристики качества обслуживания. Вероятность блокировки заявок первого класса равна вероятности 1-p00.
.
В качестве подтверждения правдоподобности полученного соотношения найдем значение вероятности блокировки при отсутствии заявок второго класса, т.е. при
Это в точности значение вероятности блокировки системы с одним сервером, получаемое при расчете по В - формуле Эрланга.
Теперь найдем среднее значение задержки нагрузки второго класса. Сначала найдем среднее число пакетов в системе, а затем воспользуемся формулой Литтла.
Заметим, что первое слагаемое описывает задержку в системе M/M/1, а второе слагаемое определяет увеличение числа пакетов в очереди за счет состязаний за доступ к каналу с заявками первого класса. Условие равновесия для нагрузки второго класса не зависит от нагрузки первого класса и состоит в выполнении неравенства ρ2<1.
Воспользовавшись формулой Литтла, найдем нормированную задержку заявок второго класса
.
Обычно при интеграции заявки первого класса - телефонные разговоры имеют существенно большую длительность, чем длительности пакетов. При этом α>>1. Как видно из полученной формулы, задержка пакетов сильно возрастает по сравнению с чисто пакетной сетью. Интересно как изменится ситуация при достаточно большом числе каналов. Случай с N>1 был проанализирован и позволил предложить приближенную формулу для расчета вероятности блокировки для нагрузки первого класса в виде
Это известная формула Эрланга. Соотношение точно при α=1 и может быть применено для других значений α в силу слабой зависимости вероятности блокировки от ее величины.
Рассмотрим пример. Пусть 1/μ1=100c ,1/μ2=10 мс. Тогда α=10000. Пусть нагрузки таковы, что ρ1=0.1, ρ2=0.4. Тогда PB=0.45 т.е. весьма значительна. В то же время задержка для пакетов μ2M<T>=1.7+990=991.7 что существенно превышает задержку без учета влияния «разговорной» нагрузки. Фактическое время задержки составит 9.9 с вместо 1.7 мс для соответствующей системы M/M/1 когда пакеты поступали бы в отдельный канал.
Как показывает анализ, стратегия интеграции нагрузки в порядке поступления запросов не обеспечивает приемлемого регулирования характеристик качества обслуживания.
Другим способом интеграции является стратегия абсолютного приоритета заявок первого класса.