- •§1. Общие сведения о природе и свойствах света.
- •.11.1. Природа света.
- •§2. Интерференция света.
- •.22.1. Принцип суперпозиции.
- •.32.2. Расчет интерференционной картины.
- •Справка 1.
- •Справка 2.
- •.42.3. Вычисление ширины интерференционных полос и расстояние между максимумами интенсивности.
- •.52.4. Интерференция в тонких пленках.
- •.62.5. Интерференция в пленках переменной толщины.
- •.72.6. Кольца Ньютона.
- •§3. Дифракция света. .83.1. Определение, общие положения. Принцип Гюйгенса-Френеля.
- •.93 Рис. 12 .2. Зоны Френеля.
- •.103.3. Зонная пластинка.
- •.113.4. Дифракция Френеля от круглого отверстия.
- •.123.5. Дифракция Фраунгофера от щели.
- •.133.6. Дифракционная решетка.
- •.143.7. Разрешающая способность дифракционной решетки.
- •.153.8. Разрешающая способность оптических инструментов.
- •§4. Дисперсия света.
- •.164.1. Групповая и фазовая скорости.
- •.174.2. Нормальная дисперсия света.
- •.184.3. Аномальная дисперсия света.
- •.194.4. Электронная теория дисперсии света.
- •§5. Поляризация света9.
- •.205.1. Закон Малюсаv.
- •.215.2. Способы получения поляризованного света. Закон Брюстераw.
- •.225.3. Двойное лучепреломление.
- •.235.4. Поляризационная призма (призма Николя).
- •.245.5. Искусственная анизотропия.
- •§6. Квантово-оптические явления. .256.1. Тепловое излучение.
- •.266.2. Испускательная и поглощательная способность тела. Абсолютно черное тело.
- •.276.3. Закон Кирхгофаy.
- •.286.4. Распределение энергии в спектре излучения абсолютно черного тела.
- •.296.5. Законы излучения.
- •.306.6. Формула Планка.
- •§7. Фотоэффект. .317.1. Опыты Столетоваdd. Законы фотоэффекта.
- •.337.3. Давление света.
- •.347.4. Эффект Комптонаgg.
- •§1. Общие сведения о природе и свойствах света. 4
- •§2. Интерференция света. 8
- •§3. Дифракция света. 18
- •AКраткие сведения об ученых, упоминавшихся в тексте.
.72.6. Кольца Ньютона.
Рис.
10
Найдем радиусы колец Ньютона, получающихся при падении света по нормали к пластинке. В этом случае =0 sin=0 и (считаем, что зазоре n=1). Из рис.10 следует, что (при условии R>>d).
Здесь R – радиус кривизны линзы;
r – радиус окружности, всем точкам которой соответствует одинаковый зазор d.
Тогда .
Чтобы учесть возникающее при отражении от пластинки изменение фазы на , нужно к величине прибавить , тогда получим
.
Условие максимума: .
Тогда радиус светлых колец в отраженном свете (m=1, 2, 3 ,…).
Условие минимума: .
Тогда радиус темных колец в отраженном свете (m=1, 2, 3 ,…).
Полученные условия максимума и минимума можно объединить в одно , где четным “m” соответствует максимум, а нечетным “m” минимум.
Если “m” – четное, то в отраженном свете будет светлое кольцо (максимум), а если “m” – нечетное, то в отраженном свете будет темное кольцо (минимум).
Значению m=1 соответствует r=0, т.е. точка касания пластинки и линзы. В этой точке будет минимум интенсивности, обусловленный изменением фазы на при отражении световой волны от пластинки.
САМОСТОЯТЕЛЬНО: Принцип действия, применение интерферометрии.
§3. Дифракция света. .83.1. Определение, общие положения. Принцип Гюйгенса-Френеля.
Явление дифракции6, так же как и явление интерференции, подтверждает волновую природу света. Дифракция света всегда сопровождается интерференцией дифрагированных лучей.
ОПРЕДЕЛЕНИЕ: Дифракцией будем называть процесс отклонения света от прямолинейного распространения в однородной среде, когда свет, огибая препятствия, заходит в область геометрической тени.
Или более строго: Дифракцией называется совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями (например, вблизи границ непрозрачных или прозрачных тел, сквозь малые отверстия и т.п.) и связанных с отклонениями при распространении от законов геометрической оптики.
Замечание 1
Условие,
при котором свет распространяется
непрямолинейно: если экран или отверстие,
помещенные на определенном расстоянии
от точки наблюдения имеют размеры,
сравнимые с размерами центральной зоны
Френеля, то свет отклоняется от
прямолинейного распространения и на
экране наблюдается дифракционная
картина.
Если
же объекты весьма велики по сравнению
с центральной зоной Френеля, то свет
распространяется прямолинейно и
получаемой на краях геометрической
тени дифракционной картиной можно
пренебречь.
Рис.
11
Проникновение световых волн в область геометрической тени (иначе говоря, анализ явления дифракции) осуществляется на основе принципа Гюйгенса-Френеля.
Согласно принципу Гюйгенса положение волнового фронта в последующие моменты времени определяется как огибающая элементарных сферических волн, излучаемых каждой точкой, до которой дошел фронт в данный момент времени (иначе: каждую точку фронта волны можно рассматривать как самостоятельный источник колебаний). Никакой интерференции между этими сферическими волнами Гюйгенс не учитывал, да и вообще не принимал во внимание фазовых соотношений. Поэтому принцип Гюйгенса в его первоначальной форме не мог служить основой волновой оптики.
Потребовалось значительное время, чтобы после принципиальных дополнений Френеля оказалось возможным применить его для истолкования дифракции.
Принцип Гюйгенса не дает сведений об амплитуде и, следовательно, об интенсивности волн, распространяющихся в различных направлениях. Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн. Он ввел представление о том, что волновое возмущение в любой точке пространства можно рассматривать как результат интерференции вторичных волн от фиктивных источников, на которые разбивается волновой фронт. Френель впервые высказал предположение, что эти фиктивные источники когерентны и поэтому могут интерферировать в любой точке пространства, в результате чего элементарные волны могут гасить или усиливать друг друга. Учет амплитуд и фаз вторичных волн позволяет найти амплитуду результирующей волны в любой точке пространства.
Развитый таким образом принцип Гюйгенса получил название принцип Гюйгенса-Френеля.