- •3. Напряжение и деформированное состояние, свойства (характеристики) материала.
- •4.Метод сечения, виды внутренних силовых факторов.
- •5.Растяжение. Основные понятия, допущения и зависимости.
- •6.Растяжение, закон Гука. Основные понятия и зависимости, влияние на абсолютное удлинение стержня.
- •7.Механические хар-ки. Диаграмма растяжения.
- •8.Деформация при растяжении (продольные, поперечные, коэф-т Пуассона).
- •9.Растяжение. Напряжение на наклонной поверхности стержня.
- •10.Кручение, основные понятия, обозначение, правило знаков.
- •11.Изгиб. Основные понятия (допущения, чистый, поперечный). Виды опор.
- •12.Изгиб. Напряжение и деформация.
- •13. Изгиб. Правило Верещагина.
- •14. Сдвиг. Основные понятия, напряжения, зависимости, закон парности. Расчет на срез.
- •15. Обобщенный закон Гука. Деформация при плоском и объемном напряжении состояния.
- •16.Изменение объема при объемном напряженном состоянии. Обобщенный закон Гука.
- •17.Теории предельных состояний. Общие понятия и назначение. 1,2,3 теории.
- •18. Теории предельных состояний. Общие понятия и назначение. 4,5 теории.
- •19. Сложное сопротивление. Общие понятия, назначение. Косой изгиб. Изгиб и растяжение
- •20.Косой изгиб
- •21.Изгиб и растяжение (сжатие)
- •22. Сложное сопротивление. Общие понятия, назначение. Косой изгиб. Изгиб с кручением
- •23. Усталостная прочность. Общие понятия, назначение. Параметры циклов нагружения
- •24. Усталостная прочность. Общие понятия, назначение. Предел выносливости при симметричном цикле
- •25. Усталость. Факторы, влияющие на предел усталости. Общие понятия, назначение
- •26. Усталость. Общие понятия, назначение. Расчет на прочность при переменных напряжениях
- •27. Реальный объект и его схема. Схематизация свойства материала, формы элементов конструкций нагрузок
- •28. Внешние и внутренние силы. Применение метода сечения для определения внутренних сил и напряжений
- •29. Понятие о напряжениях, деформациях и перемещениях. Нормальные и касательные напряжения. Вектор полного перемещения. Линейная и угловая деформация
- •30. Растяжение и сжатие. Определение внутренних сил. Натяжение в попересных и наклонных сечениях.
- •31) Продольная и поперечная деформация при растяжении и сжатии. Коэффициент Пуассона. Закон Гука при растяжении. Потенциальная энергия деформации.
- •32. Экспериментальное изучение свойств материалов при растяжении и сжатии. Диаграмма растяжения. Основные характеристики материалов (механические).
- •33. Расчёт на прочность при растяжении и сжатии. Допускаемое напряжение и коэффициент запаса.
- •34. Чистый сдвиг. Напряжение и деформация при сдвиге.
- •35. Кручение бруса круглого, поперечного сечения. Напряжение и деформация при кручении. Определение максимальных касательных напряжений.
- •36. Геометрические характеристики брусьев круглого, поперечного сечения при кручении. Потенциальная энергия деформации при кручении.
- •11) Расчёт валов на прочность и жёсткость при кручении.
- •37. Моменты инерции сечения. Вычисление моментов инерции брусьев прямоугольного и круглого сечения.
- •38.Прямоугольное сечение.
- •39.Круглое сечение
- •40. Изгиб брусьев. Внутренние силовые факторы в поперечных сечениях бруса и их эпюры. Дифференциальные зависимости при изгибе.
- •41. Примеры элементов конструкций, работающих на изгиб. Типы опор и определение опорных реакций.
- •42. Расчет на прочность при изгибе
- •43. Напряжение в брусе при поперечном изгибе
- •44. Аналитический метод определения перемещений в балке при изгибе. Дифференциальное уравнение упругой линии. Вычисление прогибов и углов поворотов сечений.
- •45. Потенциальная энергия бруса в общем случае нагружения.
- •46. Определение перемещения бруса способом Верещагина
- •47. Напряженные состояния в точках тела . Главные площадки и главные напряжения . Виды напряженного состояния.
- •48. Деформация бруса при объемном ,напряженном состоянии. Обобщенный закон Гука.
- •49. Теории (гипотезы) прочности и их назначение . Понятие о эквивалентных напряжениях . Содержание и области применения теории прочности.
- •50. Сложное сопротивление бруса. Расчеты на прочность при косом изгибе.
- •51. Понятие об усталостной прочности. Основные характеристики цикла переменных напряжений.
- •52. Прочность при перемещенных напряжениях.
- •53.Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •54. Расчет на прочность при переменных напряжениях.
- •55. Местные напряжения. Концентрация напряжения
- •56. Контактные напряжения. Формула Герца
- •57.Устойчивость.
6.Растяжение, закон Гука. Основные понятия и зависимости, влияние на абсолютное удлинение стержня.
Растяжение – это такой вид нагружения, когда в поперечном сечении растянутого тела действуют только продольные силы N.
Рассмотрим деформацию бруса под действием продольной силы. l – начальная длина, b – начальная ширина, ∆ l – абсолютное удлинение, ∆b – абсолютное сужение.
Относительная продольная деформация Ε:
Ε=∆l/l.
При растяжении тела происходит изменение его поперечного сечения, т.е. сужение. Линейная (поперечная) деформация:
Ε1=∆b/b.
Данные деформации учитывают в точных расчётах.
μ=Ε1/Ε – коэф-т относительной деформации, или коэф-т Пуассона, - хар-ка пластичности материала.
В пределах упругих деформаций между нормальным напряжением и продольной деформацией сущ-ет прямопропорциональная зависимость (Закон Гука): σ=ΕΕ, где Е – модуль упругости (модуль Юнга), хар-ет жёсткость материала, т.е. сопсобность сопротивляться деформациям, Па.
Так как σ=F/S, то получим зависимость между нагрузкой, размерами стержня и возникающей деформацией: F/S= Е ∆l/l, откуда ∆l= Fl/ Е S. Произведение Е S наз-ют жёсткостью сечения. Следовательно, абсолют. удлинение стержня прямо пропорционально вел-не продольной силы в сечении, длине стержня и обратно пропорционально площади поперечного сечения и модулю упругости.
Определение деформации стержня под нагрузкой и сравнение её с допускаемой наз-ют расчётом на жёсткость. А также проводят расчет на прочность стержня.
7.Механические хар-ки. Диаграмма растяжения.
На диаграмме растяжения фиксир-ся растяжение конкретного материала до его полного разрушения, с целью оценки характерных механич. хар-к материала. Деформация исследуется для упругопластичного материала (н-р, малоуглерод.сталь)
Т. А соот-ет предел пропорциональности (это максимальное напряжение до которого материал соответствует закону Гука): σпц=Fпц/S.
Т. Б соот-ет предел упругости (это такое максимальное напряжение, при кот. после снятия нагрузки материал вернётся в исходное состояние): σупр=Fупр/S. Область упругих деформаций.
Т. С соот-ет предел текучести (это такое напряжение, при кот. без видимого изменения нагрузки материал течёт). Если снять нагрузку, то материал вернётся в положение Е1. Область остаточных деформаций.
После т. С необходимо приложить дополнит. силу до т. Д – это зона упрочнения. Т. Д – временный предел прочности (максимальное напряжение, при кот. материал не разрушается). Если снять нагрузку в т. Д, то материал вернётся в положение Е2, и его использовать нельзя.
Т. Е – разрушение образца.
Tgα – модуль упругости.
Механич. св-ва материала:
- Прочность – способность не разрушаться под нагрузкой;
- Жёсткость – способность незначительно деформироваться под нагрузкой;
- Выносливость – способность долгое время выдерживать переменные нагрузки;
- Устойчивость – способность сохранять первоначальную форму упругого равновесия;
- Вязкость – способность воспринимать ударные нагрузки.
Характеристики материалов:
- Твёрдость;
- Хрупкость;
- Пластичность.
Допущения о свойствах материалов:
Однородные – в люб. точке материалы имеют одинак. физико-химич. св-ва;
Сплошная среда – кристаллич. строение и микроскопич. дефекты не учитываются;
Изотропны – механич. св-ва не зависят от направления нагружения;
Идеальная упругость – полностью восстанавливают форму и размеры после снятия нагрузки.