- •3. Напряжение и деформированное состояние, свойства (характеристики) материала.
- •4.Метод сечения, виды внутренних силовых факторов.
- •5.Растяжение. Основные понятия, допущения и зависимости.
- •6.Растяжение, закон Гука. Основные понятия и зависимости, влияние на абсолютное удлинение стержня.
- •7.Механические хар-ки. Диаграмма растяжения.
- •8.Деформация при растяжении (продольные, поперечные, коэф-т Пуассона).
- •9.Растяжение. Напряжение на наклонной поверхности стержня.
- •10.Кручение, основные понятия, обозначение, правило знаков.
- •11.Изгиб. Основные понятия (допущения, чистый, поперечный). Виды опор.
- •12.Изгиб. Напряжение и деформация.
- •13. Изгиб. Правило Верещагина.
- •14. Сдвиг. Основные понятия, напряжения, зависимости, закон парности. Расчет на срез.
- •15. Обобщенный закон Гука. Деформация при плоском и объемном напряжении состояния.
- •16.Изменение объема при объемном напряженном состоянии. Обобщенный закон Гука.
- •17.Теории предельных состояний. Общие понятия и назначение. 1,2,3 теории.
- •18. Теории предельных состояний. Общие понятия и назначение. 4,5 теории.
- •19. Сложное сопротивление. Общие понятия, назначение. Косой изгиб. Изгиб и растяжение
- •20.Косой изгиб
- •21.Изгиб и растяжение (сжатие)
- •22. Сложное сопротивление. Общие понятия, назначение. Косой изгиб. Изгиб с кручением
- •23. Усталостная прочность. Общие понятия, назначение. Параметры циклов нагружения
- •24. Усталостная прочность. Общие понятия, назначение. Предел выносливости при симметричном цикле
- •25. Усталость. Факторы, влияющие на предел усталости. Общие понятия, назначение
- •26. Усталость. Общие понятия, назначение. Расчет на прочность при переменных напряжениях
- •27. Реальный объект и его схема. Схематизация свойства материала, формы элементов конструкций нагрузок
- •28. Внешние и внутренние силы. Применение метода сечения для определения внутренних сил и напряжений
- •29. Понятие о напряжениях, деформациях и перемещениях. Нормальные и касательные напряжения. Вектор полного перемещения. Линейная и угловая деформация
- •30. Растяжение и сжатие. Определение внутренних сил. Натяжение в попересных и наклонных сечениях.
- •31) Продольная и поперечная деформация при растяжении и сжатии. Коэффициент Пуассона. Закон Гука при растяжении. Потенциальная энергия деформации.
- •32. Экспериментальное изучение свойств материалов при растяжении и сжатии. Диаграмма растяжения. Основные характеристики материалов (механические).
- •33. Расчёт на прочность при растяжении и сжатии. Допускаемое напряжение и коэффициент запаса.
- •34. Чистый сдвиг. Напряжение и деформация при сдвиге.
- •35. Кручение бруса круглого, поперечного сечения. Напряжение и деформация при кручении. Определение максимальных касательных напряжений.
- •36. Геометрические характеристики брусьев круглого, поперечного сечения при кручении. Потенциальная энергия деформации при кручении.
- •11) Расчёт валов на прочность и жёсткость при кручении.
- •37. Моменты инерции сечения. Вычисление моментов инерции брусьев прямоугольного и круглого сечения.
- •38.Прямоугольное сечение.
- •39.Круглое сечение
- •40. Изгиб брусьев. Внутренние силовые факторы в поперечных сечениях бруса и их эпюры. Дифференциальные зависимости при изгибе.
- •41. Примеры элементов конструкций, работающих на изгиб. Типы опор и определение опорных реакций.
- •42. Расчет на прочность при изгибе
- •43. Напряжение в брусе при поперечном изгибе
- •44. Аналитический метод определения перемещений в балке при изгибе. Дифференциальное уравнение упругой линии. Вычисление прогибов и углов поворотов сечений.
- •45. Потенциальная энергия бруса в общем случае нагружения.
- •46. Определение перемещения бруса способом Верещагина
- •47. Напряженные состояния в точках тела . Главные площадки и главные напряжения . Виды напряженного состояния.
- •48. Деформация бруса при объемном ,напряженном состоянии. Обобщенный закон Гука.
- •49. Теории (гипотезы) прочности и их назначение . Понятие о эквивалентных напряжениях . Содержание и области применения теории прочности.
- •50. Сложное сопротивление бруса. Расчеты на прочность при косом изгибе.
- •51. Понятие об усталостной прочности. Основные характеристики цикла переменных напряжений.
- •52. Прочность при перемещенных напряжениях.
- •53.Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •54. Расчет на прочность при переменных напряжениях.
- •55. Местные напряжения. Концентрация напряжения
- •56. Контактные напряжения. Формула Герца
- •57.Устойчивость.
55. Местные напряжения. Концентрация напряжения
Многочисленные теоретические и экспериментальные исследования показывают, что в области резких изменений в форме упругого тела (входящие углы, отверстия, выточки), а также в зоне контакта деталей возникают повышенные напряжения с ограниченной зоной распространения, так называемые местные напряжения.
Например, при растяжении полосы с небольшим отверстием рис. 1, а) закон равномерного распределения напряжений вблизи отверстия нарушается. Напряженное состояние становится двухосным, а у края отверстия появляется пик напряжения. Аналогично при изгибе ступенчатого стержня (рис. 1, б) в зоне входящего угла возникает повышенное напряжение, величина которого зависит в первую очередь от радиуса закругления r. При прессовой посадке втулки на вал (рис. 1, в) у концов втулки и вала также возникают местные напряжения. Подобных примеров можно привести очень много.
Основным показателем местных напряжений является теоретический коэффициент концентрации напряжений:
где — наибольшее местное напряжение, а—так называемое номинальное напряжение Величина местных напряжений в зависимости от геометрической формы детали определяется обычно теоретически при помощи методов математической теории упругости.
Возле отверстий, выточек и других мест резкого изменения конфигурации детали возникает концентрация напряжений (рис. 14, 15).
Рис.14. Концентрация напряжений у отверстия
Рис.15. Концентрация напряжений у выточки
Отношение наибольшего напряжения в зоне концентрации к номинальному называется коэффициентом концентрации:
или
Номинальные напряжения рассчитываются по формулам сопротивления материалов.
Чем резче меняется форма тела, тем больше коэффициент концентрации напряжений.
Большие местные напряжения возникают также в зонах приложения сосредоточенных сил. Такие напряжения называются контактными.
56. Контактные напряжения. Формула Герца
Определение напряжений, возникающих в местах соприкосновения тел (контактных напряжений), является задачей теории упругости, и в курсе сопротивления материалов удается либо дать без вывода формулы для определения формы и размеров площадки контакта и напряжений в окрестности этой площадки, либо вывести простейшие формулы теории контактных напряжений, например формулы, определяющие площадку контакта, сближение центров шаров и напряжения в окрестности контакта двух шаров. Однако эта задача очень важна, особенно для машиностроения, и, вероятно, ничего не говорить о контактных напряжениях в курсе сопротивления материалов невозможно.
Начало теории контактных напряжений было заложено в работе Г.Герца [378], опубликованной в 1895 г. Им рассмотрены две задачи: первоначальное точечное касание деталей, например, касание двух шаров или шара и кольца в шарикоподшипнике и первоначальное касание по линии, например, касание двух цилиндров или ролика и кольца в роликоподшипнике. При этом предполагается, что материал деталей однородный, изотропный и упругий.
Для определения удельного давления между деталями с цилиндрическими поверхностями существует формула Герца, которая для пары вогнутой и выпуклой цилиндрических
поверхностей имеет вид
Pmax * E 1 1
C max = 0.418 * -----------*(--- - ---) 4.4.2
B R1 R2
где: R1 - радиус шейки, R2 - радиус втулки, R=R2-R1 - радиальный зазор,
E - приведенный модуль упругости
1 1 1
------ = ------ + -------- 4.4.3
E E1 E2
E1 - модуль упругости материала шейки,
E2 - модуль упругости материала втулки,
Поскольку R< 1 1 R
(--- - ---) = --------
R1 R2 R1**2
таким образом удельные контактные давления будут:
Pmax * E * R
C max = 0.418 * -------------- 4.4.4
B * R1
Эта формула дает способы, с помощью которых можно снизить контактное давление.
Соотношение удельного давления полученного по формуле 4.4.1 , полученного по формуле Герца 4.4.4 определяется так:
K max 1 P max
------- = -------- * ------------ 4.4.5
C max 2* 0.418 E* B* R
Если сопоставить эти величины для конкретных значений использованных в примерах, то получим С max/ Р max= 2.37, откуда видно, что контактные напряжения по Герцу больше максимальных значений, получаемых традиционным расчетом.