Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
metodichka_po_labam.doc
Скачиваний:
10
Добавлен:
14.11.2019
Размер:
6.2 Mб
Скачать

Контрольные вопросы

  1. Назовите источники магнитного поля.

  2. Каким образом графически изображаются магнитные поля?

  3. В чем состоит принципиальное отличие линий магнитной индукции стационарных магнитных полей от силовых линий электростатических полей?

  4. Нарисуйте линии магнитной индукции поля прямого бесконечного проводника с током; кругового витка; соленоида; прямого полосового магнита.

  5. Объясните физический смысл вектора магнитной индукции. В каких единицах измеряется магнитная индукция?

  6. Чему равны и как направлены электрическая и магнитная составляющие силы Лоренца?

  7. Как найти силу, действующую в магнитном поле на малый элемент проводника с током и на участок проводника конечной длины? Как направлена эта сила?

  8. Как действует магнитное поле на помещенный в него замкнутый проводник с током?

  9. Как определяется величина и направление магнитного момента плоского витка с током?

  10. Выведите формулу (13.10) для прямоугольной рамки с током.

Используемая литература

[1] §§ 21.1, 21.2, 21.3;

[2] §§ 14.1, 14.2, 14.6, 14.7;

[3] §§ 2.35, 2.36, 2.39, 2.41, 2.43;

[4] т.2, §§ 39, 40, 43, 45, 46;

[5] §§ 109, 110, 114, 119.

Лабораторная работа 2-14

Изучение магнитного поля соленоида с помощью датчика Холла

Цель работы: познакомиться с холловским методом измерения индукции магнитного поля, измерить индукцию магнитного поля на оси соленоида.

Теоретическое введение

В пространстве, окружающем проводники с током или движущиеся заряды, возникает магнитное поле, которое можно обнаружить по воздействию его на другой проводник с током или магнитную стрелку. Магнитное поле в каждой точке пространства количественно может быть описано с помощью вектора напряженности магнитного поля или с помощью вектора индукции магнитного поля . Векторы и связаны соотношением:

, (14.1)

где Гн/м – магнитная постоянная, μ – магнитная проницаемость вещества, показывающая, во сколько раз магнитная индукция в веществе больше, чем в вакууме. Для вакуума μ=1.

Вектор напряженности характеризует только поле макротоков (проводимости или конвекционных), а вектор магнитной индукции – результирующее поле и макро-, и микротоков в веществе, возникших в результате намагничивания магнетика.

Для вычисления напряженности и индукции магнитного поля ис­пользуют закон Био-Савара-Лапласа, согласно которому элементар­ная напряженность магнитного поля , создаваемая элементом про­водника с током в некоторой точке пространства на расстоянии , определяется выражением:

. (14.2)

Для нахождения результирующей напряженности, создаваемой проводником конечных размеров, надо воспользоваться принципом суперпозиции: напряженность магнитного поля, созданного проводником конечных размеров, равна векторной сумме элементарных напряженностей магнитных полей, созданных каждым элементом тока в отдельности, то есть интегралу по контуру с током:

. (14.3)

Применим формулы (14.2) и (14.3) для вычисления напряженности магнитного поля на оси соленоида. Каждый виток соленоида – это круговой ток, поэтому первоначально вычислим напряженность поля на оси кругового витка с током (рис. 14.1).

Элементарная напряженность поля, созданного в точке А элементом тока , направлена по правилу буравчика перпендикулярно радиус-вектору , проведенному от элемента тока в точку А (рис.14.1), а ее модуль можно найти из (14.1):

, (14.4)

где α=900 – угол между векторами и . Разложим на две составляющих: – вдоль оси контура (ОХ) и – перпендикулярную оси ОХ, тогда

, . (14.5)

При сложении составляющих магнитного поля , перпендикулярных оси ОА, они компенсируют друг друга вследствие симметрии контура. Поэтому результирующая напряженность магнитного поля в точке А направлена вдоль оси кругового тока и равна по модулю:

(14.6)

Здесь учтено, что величины I, r, β постоянны, а интеграл по контуру равен длине окружности контура. Из рис.14.1 найдем , тогда:

, (14.7)

или:

. (14.8)

Перейдем теперь к вычислению поля соленоида, изображенного на рис. 14.2. Пусть на единицу длины соленоида приходится витков, тогда на участке будет витков, которые в точке О солено­ида согласно (14.7) создадут напряженность

(14.9)

На рис. 14.3 отдельно изображены элемент , радиус-вектор и углы θ и dθ. Из геометрических построений рис. 14.2 и 14.3 следует:

, (14.10)

Рис. 14.2 Рис. 14.3

Подставляем (14.10) в (14.9) и интегрируем в пределах от θ1 до θ2:

(14.11)

В случае бесконечного соленоида θ1=0, θ2=π, и тогда

. (14.12)