
- •В. И. Варанкина элементарные функции
- •Глава 1. Функции. Их виды и основные свойства
- •§1. Понятие функции
- •§2. Виды функций
- •§3. Способы задания функций
- •I. Аналитический способ.
- •II. Описательный способ.
- •III. Табличный способ.
- •IV. Графический способ.
- •§4. Операции над функциями
- •§5. Свойства функций: монотонность, четность, нечетность, периодичность, ограниченность
- •I. Монотонность.
- •II. Четность, нечетность.
- •III. Периодичность.
- •IV. Ограниченность.
- •§6. Классификация элементарных функций
- •Глава 2. Элементарные функции и их свойства
- •§ 7. Степенная функция с натуральным показателем
- •Свойства степени с натуральным показателем
- •Свойства функции ,
- •4. Четность, нечетность.
- •5. Монотонность.
- •6. Поведение функции в бесконечно удаленных точках.
- •7. Неравенства, связанные со свойствами степенной функции с натуральным показателем.
- •8. Множество значений.
- •9. Ограниченность.
- •§ 8. Степенная функция с целым отрицательным показателем
- •Свойства функции ,
- •4. Четность, нечетность.
- •5. Монотонность.
- •6. Асимптоты функции.
- •7. Множество значений.
- •8. Ограниченность.
- •§ 9. Степенная функция с показателем ( , n 1)
- •Свойства функции ( )
- •2. Множество значений.
- •3. Ограниченность.
- •5. Четность, нечетность.
- •7. Неравенства, связанные со свойствами функции .
- •§ 10. Понятие арифметического корня, его свойства
- •Свойства арифметического корня
- •§ 11. Понятие и свойства степени с рациональным показателем
- •Свойства степени с рациональным показателем
- •§ 12. Степенная функция с положительным рациональным показателем
- •§ 13. Степенная функция с отрицательным рациональным показателем
- •1. Область определения.
- •3. Четность, нечетность.
- •§ 14. Свойства степенной функции с рациональным показателем, связанные с неравенствами
- •§ 15. Определение степени действительного числа с иррациональным показателем
- •Корректность определения
- •Свойства степени с действительным показателем
- •§ 16. Показательная функция
- •2. Монотонность.
- •3. Нули функции, промежутки знакопостоянства.
- •4. Непрерывность.
- •5. Поведение функции в бесконечно удаленных точках.
- •6. Множество значений.
- •§ 17. Логарифмическая функция
- •Свойства логарифмической функции
- •5. Поведение функции в граничных точках области определения.
- •6. График логарифмической функции.
- •Свойства логарифмов
- •§ 18. Степенная функция с иррациональным показателем
- •2. Непрерывность.
- •5. Поведение функции в граничных точках области определения.
- •6. Множество значений.
- •Построение графика степенной функции
- •Тригонометрические функции
- •§ 19. Тригонометрический круг. Понятие синуса и косинуса числа
- •§ 20. Функция и ее свойства
- •3. Периодичность.
- •5. Четность, нечетность.
- •6. Непрерывность.
- •7. Монотонность.
- •§ 21. Функция и ее свойства
- •3. Периодичность.
- •5. Четность, нечетность.
- •6. Непрерывность.
- •7. Монотонность.
- •§ 22. Функция и ее свойства
- •7. Асимптоты.
- •8. Множество значений.
- •§ 23. Функция и ее свойства
- •7. Асимптоты.
- •8. Множество значений.
- •Обратные тригонометрические функции
- •§ 24. Функция и ее свойства
- •4. Четность, нечетность.
- •6. Нули и промежутки знакопостоянства.
- •7. График функции .
- •§ 25. Функция и ее свойства
- •6. Нули и промежутки знакопостоянства.
- •7. График функции .
- •§ 26. Функция и ее свойства
- •4. Четность, нечетность.
- •6. Нули и промежутки знакопостоянства.
- •7. Горизонтальные асимптоты.
- •8. График функции .
- •§ 27. Функция и ее свойства
- •6. Нули и промежутки знакопостоянства.
- •7. Горизонтальные асимптоты.
- •Литература
- •Содержание
- •Глава 1. Функции. Их виды и основные свойства .3
- •§1. Понятие функции 3
- •Варанкина Вера Ивановна Элементарные функции
§6. Классификация элементарных функций
К основным элементарным функциям относятся следующие функции:
степенная
(
R,
;
показательная
;
логарифмическая
;
тригонометрические
;
обратные тригонометрические
;
Определение.
Элементарной
называется
функция
,
полученная из основных элементарных
функций и функций
(с
– число) с помощью конечного числа
арифметических операций и композиций.
Примеры.
– элементарная функция.
Функции
не являются элементарными.
Определение.
Многочленом
п-ой
степени
называется
функция вида
,
где
– числа,
,
п –
неотрицательное целое число.
Примеры.
– многочлен 5-ой степени,
– многочлен нулевой степени
Определение. Рациональной функцией называется частное двух многочленов.
Пример.
– рациональная функция.
Многочлен является частным случаем рациональной функции.
Определение.
Функция
называется
алгебраической,
если она получена из функций
и y = c
(c
– произвольное
число) с помощью конечного числа
арифметических операций, взятия корней
натуральной степени и композиции
функций.
Например, рациональные функции являются алгебраическими.
Определение. Алгебраическая функция , не являющаяся рациональной, называется иррациональной.
Пример.
– иррациональная функция.
Определение. Функция , не являющаяся алгебраической, называется трансцендентной.
К трансцендентным функциям, например, относятся все тригонометрические, обратные тригонометрические, показательная и логарифмическая функции.
Классификацию элементарных функций можно представить следующей схемой.
Глава 2. Элементарные функции и их свойства
§ 7. Степенная функция с натуральным показателем
Определение. Степенью действительного числа a с натуральным показателем n называется число, равное произведению n сомножителей, каждый из которых равен a:
.
Свойства степени с натуральным показателем
Доказательство этих свойств следует непосредственно из определения степени с натуральным показателем.
Определение.
Степенной
функцией с натуральным показателем
называется
функция, определенная формулой
(
,
n 1).
Замечание.
Функцию
является линейной, ее не относят к
степенным. Однако в доказательствах мы
не будем исключать этот случай.
Свойства функции ,
1.
Область
определения.
,
поскольку операция возведения в
натуральную степень определена для
любого действительного числа.
2.
Нули функции,
промежутки знакопостоянства.
Очевидно,
.
Если n
четно, то
для любого
.
Если n
нечетно, то
для всех
и
для всех
3.
Непрерывность.
Функция
непрерывна на R
как произведение
n
экземпляров функции
,
непрерывность которой в любой точке
числовой прямой легко устанавливается
непосредственно по определению.
4. Четность, нечетность.
Предложение. Функция , является четной, если n четно, и нечетной, если n нечетно.
Доказательство.
– симметричное относительно нуля
множество.
Пусть
,
.
Тогда
для любого
.
Следовательно,
– четная
функция при четном п.
Пусть
,
.
Тогда
для любого
.
Следовательно,
– нечетная
функция при
нечетном п.