Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория вероятн..doc
Скачиваний:
39
Добавлен:
12.11.2019
Размер:
2.53 Mб
Скачать

Нелинейная регрессия

Многие экономические зависимости не являются линейными, и поэтому их моделирование линейными уравнениями регрессии не может дать положительного результата. Например, при анализе эластичности спроса по цене применяется так называемая логарифмическая модель, при анализе издержек от объема выпуска – полиномиальная (кубическая) модель. Достаточно широко применяются и многие другие модели – в частности, обратная и экспоненциальная модели. Кратко рассмотрим некоторые из моделей нелинейной регрессии.

Логарифмическая модель

Пусть некоторая экономическая зависимость моделируется формулой , где A,  – параметры модели. Эта функция может отражать зависимость спроса Y на благо от его цены X (в этом случае 0) или от дохода X (0 – функция Энгеля). Прологарифмировав обе части последнего соотношения, получим , замена переменных вида позволяет формально свести уравнение к линейному виду:

.

По МНК можно рассчитать значения параметров аналогично случаю линейной модели (при этом вместо наблюдений рассматриваются наблюдения ).

Обратная модель

Обратная модель имеет вид .

Заменой эта модель сводится к линейной. Модель применяется, например, для характеристики связи удельных расходов сырья, материалов, топлива с объемом выпускаемой продукции. Кроме этого, классическим примером применения модели является кривая Филлипса, характеризующая нелинейное соотношение между нормой безработицы x и процентом прироста заработной платы y.

Степенная модель

Степенная функция вида при m=3 (кубическая функция) в микроэкономике моделирует зависимость общих издержек от объема выпуска; квадратичная функция (m=2) отражает зависимость между объемом выпуска и средними или предельными издержками (или между расходами на рекламу и прибылью). Модель может быть сведена к линейной модели множественной регрессии с помощью замены . Параметры модели ищут с помощью МНК.

Показательная модель

Показательная функция может использоваться при анализе изменения переменной Y с постоянным темпом прироста во времени. Например, производственная функция Кобба – Дугласа с учетом научно – технического прогресса:

.

Прологарифмировав, получаем соотношение:

,

которое сводится к линейному виду с помощью замен

.

Цепи Маркова Цепи Маркова с дискретным временем

Цепи Маркова широко используются в экономических исследованиях – в частности, при изучении систем массового обслуживания. Примерами процессов массового обслуживания могут служить, в частности: обслуживание покупателей в сфере розничной торговли, транспортное обслуживание, ремонт аппаратуры, машин и механизмов, находящихся в эксплуатации, обработка документов в системе управления и т.п. Главной особенностью процессов массового обслуживания является случайность (момент возникновения заявки на обслуживание и окончание обслуживания заявки часто непредсказуемы).

В теоретическом плане цепи Маркова рассматриваются как частный вид случайных процессов. Функция называется случайной, если ее значение при любом аргументе t является случайной величиной. Если в качестве t выступает время, то случайная функция описывает случайный процесс.

Цепью Маркова называют последовательность испытаний, в каждом из которых появляется только одно из k несовместных событий полной группы, причем, условная вероятность того, что в s-м испытании наступит событие , при условии, что в (s-1)–м испытании наступило событие , не зависит от результатов предшествующих испытаний.

Например, если последовательность испытаний образует цепь Маркова, и полная группа состоит из четырех несовместных событий , причем, известно, что в шестом испытании появилось событие , то условная вероятность того, что в седьмом испытании наступит событие , не зависит от того, какие события появились в первом, втором, …пятом испытаниях.

Пусть некоторая система в каждый момент времени находится в одном из k состояний. В отдельные моменты времени в результате испытания состояние системы изменяется, т.е. система переходит из одного состояния, например i, в другое, например j. После испытания система может остаться в том же состоянии (перейти из состояния в состояние ).

Для цепей Маркова часто используется следующая терминология: события называют состояниями системы, а испытания – изменениями ее состояний.

В связи с этим цепью Маркова можно назвать последовательность испытаний, в каждом из которых система принимает только одно из k состояний полной группы, причем, условная вероятность того, что в s–м испытании система будет находиться в состоянии j, при условии, что после (s-1)–м испытания она находилась в состоянии i, не зависит от результатов предшествующих испытаний.

Цепью Маркова с дискретным временем называют цепь, изменение состояний которой происходит в определенные фиксированные моменты времени.

Цепью Маркова с непрерывным временем называют цепь, изменение состояний которой происходит в любые случайные возможные моменты времени.