Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
теория вероятн..doc
Скачиваний:
40
Добавлен:
12.11.2019
Размер:
2.53 Mб
Скачать

Правила суммы и произведения

Решение многих комбинаторных задач основывается на двух фундаментальных правилах, называемых, соответственно, правилами суммы и произведения.

Правило суммы выражает вполне очевидный факт: если и – два непересекающихся конечных множества, то число элементов, содержащихся в объединении этих множеств, равно сумме чисел элементов в каждом из них.

Если обозначить число элементов конечного множества через , то правило суммы запишется следующим образом: , если и не имеют общих элементов.

Обычно правило суммы формулируют следующим образом: если элемент может быть выбран способами, а элемент – способами, то один из этих элементов можно выбрать способами.

Обобщение правила суммы на любое число множеств не менее очевидно: если – попарно непересекающиеся конечные множества, то .

Задачи, которые можно решить применением одного лишь правила суммы, тривиальны. Для решения более сложных задач используется также и правило произведения.

Правило произведения может быть сформулировано следующим образом: если элемент может быть выбран способами, при каждом выборе элемент может быть выбран способами, при каждом выборе пары элемент может быть выбран способами и т.д., и после каждого выбора элемент можно выбрать способами, то последовательность ( ) из этих элементов в указанном порядке можно выбрать способами.

Более корректно правило произведения можно сформулировать в виде теоремы.

Теорема. Пусть имеется , , групп элементов, причем –я группа содержит элементов, . Выберем из каждой группы по одному элементу. Тогда общее число способов, которыми можно произвести такой выбор, равняется

.

Доказательство. Теорема доказывается методом индукции.

Пусть . Обозначим через различные значения элемента , а через – различные значения элемента . Если выбрано значение элемента , то можно составить различные пары, содержащие этот элемент. Это справедливо и для любого другого значения элемента . Таким образом, всего можно составить различные пары, т.е. для правило выполняется.

Предположим, что оно выполняется для групп из элементов. Тогда любую группу ( ) можно рассматривать как пару элементов . Первый элемент этой пары, по предположению индукции, может быть выбран способами; при любом из них элемент может быть выбран способами. Таким образом, число различных групп ( ) будет равно .

Схемы выбора. Основные понятия комбинаторики

Комбинаторика – раздел элементарной математики, в котором для конечных множеств рассматриваются различные соединения элементов, такие, как сочетания, размещения, перестановки, а также все виды соединений с повторениями. Задачи комбинаторики впервые рассматривались в связи с возникновением теории вероятностей, где к задачам комбинаторики приводит подсчет вероятностей на основе гипотезы равновозможных элементарных событий.

Рассмотрим совокупность различных пронумерованных элементов .

Мы выбираем из этой совокупности элементов. Произвольная упорядоченная выборка из этих элементов ( ) называется соединением. Эта выборка может быть как без повторений, так и с повторениями.

Нас интересует, сколькими способами можно сформировать из этой совокупности выборок, содержащих элементов, или сколько различных результатов (то есть соединений ) получится.

На этот вопрос нельзя дать однозначный ответ, пока мы не определимся с тем, как организован выбор (скажем, можно ли вошедшие в одну из выборок элементы использовать в других соединениях), и, что понимается под различными соединениями.

Для наглядности, совокупность обычно рассматривают как урну с пронумерованными шариками, из которой извлекается шариков, образующих выборку.

Рассмотрим следующие возможные схемы выбора:

  • Выбор с возвращением: каждый выбранный шарик возвращается в урну, то есть каждый из шариков выбирается из полной урны. В полученном наборе, состоящем из номеров шариков, могут встречаться одни и те же номера (выборка с повторениями).

  • Выбор без возвращения: выбранные шарики в урну не возвращаются, и в полученном наборе не могут встречаться одни и те же номера (выборка без повторений).

И в том, и в другом случае результатом выбора является набор из номеров шариков. Удобно считать, что шарики всегда выбираются последовательно, по одному (с возвращением или без). Условимся, какие результаты мы будем считать различными. Есть ровно две возможности:

  • Выбор с учетом порядка: два набора номеров шариков считаются различными, если они отличаются составом или порядком номеров. Так, при выборе трех шариков из урны, содержащей 5 шариков, наборы (1,5,2), (2,5,1) и (4,4,5) различны, если производится выбор с учетом порядка.

  • Выбор без учета порядка: два набора номеров шариков считаются различными, если они отличаются составом. Наборы, отличающиеся лишь порядком следования номеров, считаются одинаковыми. Так, в примере выше первые два набора (1,5,2) и (2,5,1) есть один и тот же результат выбора, а набор (4,4,5) — другой результат выбора.

Подсчитаем теперь, сколько же возможно различных результатов при каждой из четырех схем (выбор с возвращением и без, и в каждом из этих случаев учитываем ли мы порядок или нет).