
- •Тема 1. Вероятностные пространства 30
- •Тема 2. Основные вероятностные схемы испытаний 60
- •Тема 3. Случайные величины 87
- •Тема 4. Математическая статистика 140
- •Введение Место теории вероятностей и математической статистики в современной математической науке и их роль в экономических исследованиях
- •Особенности изучения теории вероятностей и математической статистики менеджером
- •Краткие сведения
- •Тема 1. Вероятностные пространства Лекция 1. Пространство случайных событий
- •Основные понятия теории вероятностей
- •Случайные события
- •Понятие случайного эксперимента
- •Пространство элементарных событий
- •Наступление события, благоприятствующие исходы
- •Совместные (совместимые), несовместные (несовместимые) события
- •Достоверное и невозможное события
- •Алгебра событий Операции над событиями (сумма, разность, произведение)
- •Свойства операций над событиями
- •Алгебра и сигма-алгебра событий
- •Общее определение вероятности
- •Классическое определение вероятности события. Случаи равновероятных исходов
- •Статистическое определение вероятности события. Случаи неравновероятных исходов
- •Геометрические вероятности
- •Аксиоматическое построение теории вероятностей
- •, Т.Е. Вероятность достоверного события равна единице;
- •Вероятность события , заключающееся в том, что наступит одно из попарно несовместных событий ( ), составляет
- •Полная группа событий
- •Условная вероятность
- •Формула умножения вероятностей
- •Формула сложения вероятностей
- •Независимость событий
- •Простейшие свойства вероятностей
- •Свойства условных вероятностей
- •Формула полной вероятности. Формула Байеса
- •Контрольные вопросы к теме №1
- •Тема 2. Основные вероятностные схемы испытаний Лекция 2. Основные формулы вычисления вероятностей
- •Классическая вероятностная схема
- •Правила суммы и произведения
- •Схемы выбора. Основные понятия комбинаторики
- •Выбор без возвращения, с учетом порядка
- •Выбор без возвращения, без учета порядка
- •Выбор с возвращением и с учетом порядка
- •Выбор с возвращением и без учета порядка
- •Урновая схема
- •Наивероятнейшее число наступления событий в схеме Бернулли
- •Предельные теоремы для схемы Бернулли
- •Локальная теорема Муавра–Лапласа
- •Интегральная теорема Муавра – Лапласа
- •Теорема Пуассона
- •Понятие потока событий
- •Полиномиальная схема
- •Понятие цепи Маркова
- •Однородные цепи Маркова
- •Равенство Маркова
- •Предельные вероятности
- •Контрольные вопросы к теме №2
- •Тема 3. Случайные величины Лекция 3. Одномерные случайные величины
- •Непрерывные и дискретные случайные величины
- •Закон распределения случайной величины
- •Функция распределения случайной величины и ее свойства
- •Свойства функции распределения
- •Числовые характеристики непрерывных случайных величин Математическое ожидание случайной величины, его вероятностный смысл и свойства
- •Свойства математического ожидания
- •Дисперсия случайной величины и ее свойства
- •Среднеквадратическое отклонение
- •Начальные и центральные моменты
- •Основные примеры распределений дискретной случайной величины
- •Биномиальное распределение, его математическое ожидание, дисперсия
- •Распределение Пуассона
- •Геометрическое распределение
- •Непрерывные случайные величины Функция и плотность распределения вероятностей
- •Числовые характеристики непрерывных случайных величин
- •Основные примеры распределений непрерывной случайной величины Равномерное распределение
- •Показательное распределение
- •Нормальное распределение
- •Свойства функции Гаусса
- •Центральная предельная теорема
- •Вероятность попадания нормальной случайной величины в заданный интервал
- •Функция Лапласа и ее свойства
- •Вычисление вероятности заданного отклонения. Правило «трех сигм»
- •Лекция 4. Многомерные случайные величины
- •Закон распределения вероятностей двумерной случайной величины
- •Совместная функция распределения двумерной случайной величины
- •Свойства совместной функции распределения двумерной случайной величины
- •Плотность совместного распределения вероятностей непрерывной двумерной случайной величины
- •Свойства двумерной плотности вероятности
- •Условное математическое ожидание
- •Независимые случайные величины
- •Числовые характеристики системы двух случайных величин
- •Корреляционный момент
- •Коэффициент корреляции
- •Свойства коэффициента корреляции
- •Линейная регрессия. Метод наименьших квадратов
- •Распределение 2
- •Распределение Стьюдента
- •Распределение Фишера
- •Предельные теоремы теории вероятностей Закон больших чисел. Неравенство Чебышева. Теорема Чебышева
- •Контрольные вопросы к теме №3
- •Тема 4. Математическая статистика Лекция 5. Основы математической статистики
- •Выборочный метод и его основные понятия
- •Способы отбора
- •Вариационный ряд для дискретных и непрерывных случайных величин
- •Полигон и гистограмма
- •Эмпирическая функция распределения и ее свойства
- •Свойства эмпирической функции распределения
- •Статистические оценки параметров распределения. Состоятельность и несмещенность статистических оценок
- •Выборочные среднее и дисперсия
- •Надежность и доверительный интервал
- •Определение доверительных интервалов Доверительный интервал для математического ожидания нормального распределения при известной дисперсии
- •Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии
- •Доверительный интервал для оценки среднего квадратического отклонения нормального распределения
- •Проверка статистических гипотез
- •Статистический критерий
- •Критическая область. Область принятия гипотезы. Критические точки
- •Критерий согласия Пирсона о виде распределения
- •Элементы теории корреляции
- •Выборочные уравнения регрессии
- •Линейная регрессия
- •Множественная линейная регрессия
- •Нелинейная регрессия
- •Логарифмическая модель
- •Обратная модель
- •Степенная модель
- •Показательная модель
- •Цепи Маркова Цепи Маркова с дискретным временем
- •Однородные цепи Маркова
- •Переходные вероятности. Матрица перехода
- •Равенство Маркова
- •Цепи Маркова с непрерывным временем
- •Уравнения Колмогорова
- •Финальные вероятности состояний системы
- •Предельные вероятности
- •Контрольные вопросы к теме №4
- •Экзаменационные вопросы
- •Литература
- •Теория вероятностей и математическая статистика
- •Технический редактор т.В. Жибуль
- •220007, Г. Минск, ул. Московская, 17.
Выборочные уравнения регрессии
Для
определения значений теоретических
коэффициентов, входящих в уравнения
регрессии, вообще говоря, необходимо
знать и использовать все значения
переменных генеральной совокупности,
что практически невозможно. В связи с
этим по выборке ограниченного объема
строится так называемое выборочное
(эмпирическое) уравнение регрессии.
В силу несовпадения статистической
базы для генеральной совокупности
и выборки оценки коэффициентов,
входящих в уравнение регрессии,
практически всегда отличаются от
истинных (теоретических) значений, что
приводит к несовпадению эмпирической
и теоретической линий регрессии.
Различные выборки из одной и той же
генеральной совокупности обычно приводят
к отличающимся друг от друга оценкам.
Задача состоит в том, чтобы по конкретной
выборке
найти оценки неизвестных параметров
так, чтобы построенная линия регрессии
являлась бы наилучшей, среди всех других
линий.
Линейная регрессия
Если функция регрессии линейна, то говорят о линейной регрессии. Линейная регрессия (линейное уравнение) является наиболее распространенным (и простым) видом зависимости между экономическими переменными. Для этого простейшего случая имеем:
или
Последнее
соотношение называется теоретической
линейной регрессионной моделью;
коэффициенты
– теоретическими параметрами регрессии;
– случайным отклонением.
По выборке ограниченного объема строится выборочное уравнение регрессии:
, (1)
где
– оценки неизвестных параметров
,
называемые выборочными (эмпирическими)
коэффициентами регрессии,
– оценка условного математического
ожидания
.
Для величин
справедлива формула:
, (2)
где отклонение
– оценка теоретического отклонения
.
Построенная прямая выборочной регрессии должна наилучшим образом описывать эмпирические данные, т.е. коэффициенты должны быть такими, чтобы случайные отклонения были минимальны. Наиболее распространенным методом нахождения коэффициентов уравнения регрессии является метод наименьших квадратов (МНК).
Если по выборке требуется определить оценки выборочного уравнения регрессии (2), то вводится в рассмотрение и минимизируется функция:
.
Необходимым условием существования минимума данной функции двух переменных является равенство нулю ее частных производных по неизвестным параметрам :
.
Отсюда:
,
выразив из последних соотношений коэффициенты, получим окончательно:
, (3)
где введены обозначения:
.
Множественная линейная регрессия
На любой экономический показатель, чаще всего, оказывает влияние не один, а несколько факторов. Например, спрос на некое благо определяется не только ценой данного блага, но и ценами на замещающие и дополняющие блага, доходом потребителей и многими другими факторами. В этом случае рассматривается множественная регрессия:
.
Теоретическое линейное уравнение регрессии имеет вид:
,
или для
индивидуальных наблюдений
:
.
Параметры
регрессии могут быть найдены в случае,
если
.
Самым распространенным методом оценки
параметров уравнения множественной
линейной регрессии также является метод
наименьших квадратов.