Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект_Естествознание.doc
Скачиваний:
16
Добавлен:
11.11.2019
Размер:
1.05 Mб
Скачать

Физика элементарных частиц

Фундаментальные взаимодействия

К настоящему времени известны 4 вида основных фундаментальных взаимодействий: гравитационное, электромагнитное, сильное и слабое.

Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальным законом всемирного тяготения: между 2 точечными телами действует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Гравитационным взаимодействием определяется падение тел в поле тяготения Земли. Предполагается, что гравитационное взаимодействие обуславливается некими элементарными частицами, существование которых к настоящему времени экспериментально не подтверждено.

Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрическое поле возникает при наличии электрических зарядов, а магнитное поле - при их движении. В природе существуют положительные и отрицательные заряды; и это определяет характер электромагнитного взаимодействия: например, возникает либо притяжение, либо отталкивание зарядов. Различные агрегатные состояния вещества, трение, упругие и некоторые другие свойства вещества определяются преимущественно силами межмолекулярного взаимодействия, которое по своей природе является электромагнитным. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и др. Его наиболее общее описание дает электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связываю­щих электрическое и магнитное поля.

Сильное взаимодействие обеспечивает связь нуклонов в ядре и определяет ядерные силы, которые обладают зарядной независимостью, короткодействием, насыщением и другими свойствами.

Слабое взаимодействие описывает некоторые виды ядерных процессов. Оно короткодействующее и характеризует все виды бета-превращений.

Обычно для количественного анализа перечисленных взаимодействий используют 2 характеристики:

  • радиус действия

  • константа взаимодействия - характеризует величину взаимодействия.

Вид взаимодействия

Константа взаимодействия

Радиус взаимодействия

Гравитационное

6·10-39

Электромагнитное

1/137

Сильное

1

(0,1-1) 10 -13 см

Слабое

10-14

<<0,1- 10 -13 см

Из таблицы видно, что константа гравитационного взаимодействия самая малая, а радиус его действия неограничен. Гравитационное взаимодействие в процессах микромира не играет существенной роли, однако при макропроцессах ему принадлежит определяющее значение.

Сильное взаимодействие отвечает за устойчивость ядер и распространяется только в пределах размеров ядра. Чем сильнее взаимодействуют нуклоны в ядре, тем оно устойчивее, тем больше энергия его связи. Она определяется работой, которую необходимо совершить, чтобы разделить нуклоны и удалить их друг от друга на такие расстояния, при которых взаимодействие становится равным.

Классификация элементарных частиц

Характеристиками субатомных частиц являются масса, электрический заряд, спин, время жизни частицы, магнитный момент, пространственная четность, лептонный заряд, барионный заряд и др.

Когда говорят о массе частицы, имеют в виду ее массу покоя, которая не зависит от состояния движения. Частица, имеющая нулевую массу покоя, движется со скоростью света (фотон). Электрон - самая легкая частица с нулевой массой покоя.

Вторая характеристика частицы - спин - собственный момент импульса частицы. Так, протон, нейтрон и электрон имеют спин Vi, а спин фотона равен 1. В зависимости от спина все частицы делятся на 2 группы:

  • бозоны (частицы с целыми спинами - 0, 1 и 2);

  • фермионы (частицы с полуцелыми спинами - ½ и 2/3).

Частицы характеризуются временем жизни. По этому признаку частицы делятся на:

• стабильные (электрон, протон, фотон, нейтрино);

• нестабильные - все остальные; время жизни колеблется от нескольких микросекунд до 15 мин (нейтрон за пределами ядра).

Свойства частиц определяются их способностью участвовать в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, называются адронами. Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами. Кроме того, существуют частицы - переносчики взаимодействий.

Лептоны. Хотя лептоны могут иметь электрический заряд, а могут и не иметь, спин у всех у них равен ½. Среди лептонов наиболее известен электрон. Электрон - это первая их открытых элементарных частиц. Другой хорошо известный лептон — нейтрино. Нейтрино являются наиболее распространенными частицами во вселенной. Вселенную можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов.

Но несмотря на такую распространенность нейтрино, изучать их очень сложно. Нейтрино почти неуловимы. Не участвуя ни в сильном, ни в электромагнитных взаимодействиях, они проникают через вещество, как будто его вообще нет. Нейтрино - это некие «призраки» физического мира.

Достаточно широко распространены в природе мюоны, на долю которых приходится значительная часть космического излучения. Мюон - одна из первых известных нестабильных субатомных частиц, открытая в 1936 г. Во всех отношениях мюон напоминает электрон: имеет тот же заряд и спин, участвует в тех же взаимодействиях, но имеет большую массу и не стабилен, примерно за 2 миллионные доли секунды мюон распадается на электрон и 2 нейтрино.

В конце 70-х гг. был обнаружен третий заряженный лептон - «тау-лептон». Это очень тяжелая частица. Ее масса около 3500 масс электрона, но во всем остальном тау-лептон ведет себя подобно электрону и мюону.

В 60-е гг. было установлено, что существует несколько типов нейтрино: электронное нейтрино, мюонное нейтрино и тау-нейтрино.

Т.о., общее число лептонов — 6, разумеется, у каждого лептона есть своя античастица. Т.е., общее число лептонов — 12. Нейтральные лептоны участвуют только в слабом взаимодействии, заряженные - в слабом и электромагнитных взаимодействиях.

Адроны. Если лептонов 12, то адронов сотни, и подавляющее число из них резонансны, т.е. крайне нестабильны. Тот факт, что адронов существует сотни, наводит на мысль, что адроны - не элементарные частицы, а построены из более мелких частиц. Все адроны встречаются в 2 разновидностях - электрически заряженные и нейтральные. Наиболее известны и широко распространены такие адроны, как нейтрон и протон. Остальные адроны короткоживущие и быстро распадаются. Это класс барионов (тяжелые частицы гипероны и барионные резонансы). Адроны участвуют в сильном, слабом и электромагнитном взаимодействиях.

Существование и свойства большинства известных адронов были установлены в ускорителях.

Частицы переносчики взаимодействий. Это тип частиц, которые не являются строительным материалом материи, а непосредственно обеспечивают четыре фундаментальных взаимодействия, т.е. образуют своего рода «клей», не позволяющий миру распадаться на части. Переносчиком электромагнитного взаимодействия выступает фотон. Теория электромагнитного взаимодействия представлена квантовой электродинамикой. Переносчики сильного взаимодействия - глюоны. Глюоны - переносчики взаимодействия между кварками, связывающими их попарно или тройками. Переносчики слабого взаимодействия три частицы - W и Z —бозоны. Они были открыты лишь в 1983 г. Радиус слабого взаимодействия чрезвычайно мал, поэтому его переносчиками должны быть частицы с большими массами покоя. В соответствии с принципом неопределенности жизнь частиц с такой большой массой покоя должна быть чрезвычайно короткой - всего лишь около 10 -26 с.

Высказывается мнение, что возможно существование и переносчика гравитационного поля - гравитона. Подобно фотонам, гравитоны движутся со скоростью света; это частицы с нулевой массой покоя. Но этим сходство фотона и гравитона исчерпывается. В то время как фотон имеет спин 1, спин гравитона — 2. Это различие определяет направление силы: при электромагнитном взаимодействии одноименно заряженные частицы отталкиваются, а при гравитационном - все частицы притягиваются друг к другу. В принципе гравитоны можно зафиксировать в эксперименте. Но поскольку гравитационное взаимодействие очень слабое и в квантовых процессах почти не проявляется, то непосредственно зафиксировать гравитоны очень сложно и пока не удалось.

Теории элементарных частиц

Квантовая электродинамика

В середине XX в. была создана теория электромагнитного взаимодействия - квантовая электродинамика (КЭД). В КЭД для описания электромагнитного взаимодействия использовано понятие виртуального фотона. Эта теория удовлетворяет основным принципам как квантовой теории, так и теории относительности.

В центре теории (КЭД) анализ актов испускания или поглощения одного фотона одной заряженной частицей, а также аннигиляции электрон-позитронной пары в фотон или порождение фотонами такой пары.

Если в классическом описании электроны представляются в виде твердого точечного шарика, то в КЭД окружающее электрон электромагнитное поле рассматривается как облако виртуальных фотонов, которое неотступно следует за электроном, окружая его квантами энергии. Т.е. электрон покрывается облаком виртуальных фотонов, электронов и позитронов, находящихся в состоянии динамического равновесия. Фотоны возникают и исчезают очень быстро, а электроны движутся в пространстве не по вполне определенным траекториям. Т.к. определить момент, когда происходит обмен фотоном и какая из частиц испускает фотон, а какая поглощает, невозможно. Эти характеристики скрыты пеленой квантовой неопределенности.

Т.о., описание взаимодействия с помощью частицы-переносчика в КЭД привело к расширению понятия фотона. Вводится понятие реального (кванта видимого нами света) и виртуального (скоротечного, призрачного) фотона, который «видят» только заряженные частицы, претерпевающие рассеяние.

Для проверки КЭД физики сосредоточились на 2 эффектах:

  1. Первый касался энергетических уровней атомов водорода. Согласно КЭД, уровни должны быть слегка смещены относительно положения, которое они занимали бы в отсутствие виртуальных фотонов.

  2. Вторая решающая проверка КЭД касалась чрезвычайно малой поправки к собственному магнитному моменту электрона.

Теоретические и экспериментальные результаты проверки КЭД совпадают с высочайшей точностью - более 9 законов после запятой. Это дает право считать КЭД наиболее совершенной из существующих естественнонаучных теорий. За создание КЭД С. Томанага, Р. Фейнман и Дж. Швингер были удостоены Нобелевской премии (1965), Большой вклад в становление КЭД был внесен и нашим выдающимся физиком-теоретиком - Л.Д. Ландау.

После подобного триумфа КЭД была принята как модель для квантового описания 3 других фундаментальных взаимодействий.

Теория кварков

Теория кварков - это теория адронов. Основная идея этой теории очень проста: все адроны построены из более мелких частиц - кварков. Кварки несут дробный электрический заряд, который составляет либо - 2/з, либо +2/з заряда электрона. Комбинация из двух или трех кварков может иметь суммарный заряд, равный 0 или 1. Все кварки имеют спин ½, —> относятся к фермионам. Основоположники теории кварков Гелл-Манн и Цвейг, чтобы учесть все известные в 60-е гг. адроны ввели 3 сорта (аромата) кварков: u (от up-верхний), d (от down - нижний) и s (от strange - странный). Кварки могут соединяться друг с другом одним из двух возможных способов: либо тройками, либо парами - кварк-антикварк. Из 3 кварков состоят сравнительно тяжелые частицы - барионы (нейтрон и протон). Более легкие пары кварк-антикварк образуют частицы, получившие название мезоны. Например, протон состоит из 2 и- и 1 d- кварка, а нейтрон - из 2 d-кварков и одного u-кварка. Чтобы это «трио» кварков не распадалось, необходимо удерживающая их сила, некий «клей». Кварки скрепляются между собой сильным взаимодействием. Переносчики сильного взаимодействия — глюоны (цветные заряды).

То обстоятельство, что из различных комбинаций трех основных частиц можно получить все известные адроны, стало триумфом теории кварков. Но в 70-е гг. были открыты новые адроны (пси-частицы, ипсилон-мезон и др.). Этим был нанесен чувствительный удар первому варианту теории кварков, поскольку в том варианте теории уже не было место ни для одной новой частицы. Все возможные комбинации из кварков и их антикварков были уже исчерпаны. Проблему удалось решить за счет введения 3 новых ароматов: с-кварков (charm - очарование), b-кварк (beauty - красота (прелесть)); t-кварк (top - верхний).

Теория электрослабого взаимодействия

В 70-е гг. XX в. 2 фундаментальных взаимодействия из 4 физики объединили в одно. Теория электрослабого взаимодействия в окончательной форме была создана независимо друг от друга - С. Вайнбергом и А. Саламом. Теория электрослабого взаимодействия решающим образом повлияла на дальнейшее развитие физики в конце XX в.

Главная идея в построении этой теории состояла в описании слабого взаимодействия на языке концепции калибровочного поля, в соответствии с которой ключом к описанию природы взаимодействия служит калибровочная симметрия.

Система обладает калибровочной симметрией, если ее природа остается неизменной при изменении отсчета уровня, масштаба или значения некоторой физической величины. Так, например, в физике работа зависит от разности высот, а не от абсолютной высоты, напряжение — от разности потенциалов, а не от их абсолютных величин.

Калибровочные преобразования симметрии могут быть глобальными и локальными. Глобальные преобразования изменяют систему в целом, во всем ее пространственно-временном объеме. Локальными калибровочными преобразованиями называются преобразования, которые изменяются от точки к точке. Глобальное калибровочное преобразование теоретически можно превратить в локальное калибровочное преобразование. Для их связи и поддержания симметрии в каждой точке пространства необходимы новые силовые поля — калибровочные. В природе существует ряд локальных калибровочных симметрий, и необходимо соответствующее число калибровочных полей для их компенсации. Значение концепции калибровочной симметрии заключается в том, что благодаря ей теоретически моделируются все 4 фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля.

Простейшей калибровочной симметрией обладает электромагнетизм. Для представления поля слабого взаимодействия как калибровочного прежде всего необходимо установить точную форму соответствующей калибровочной симметрии. Выяснилось, что для поддержания симметрии в описании слабого взаимодействия необходимы 3 новых силовых поля. Было получено и квантовое описание этих 3 полей: должны существовать 3 новых типа частиц - переносчиков взаимодействия, по одному для каждого поля. Все вместе они называются тяжелыми векторными бозонами со спином 1 и являются переносчиками слабого взаимодействия. Частицы W+ и W - являются переносчиками 2 из 3 связанных со слабым взаимодействием полей. Третье поле соответствует электрически нейтральной частице-переносчику, получившей название Z - частицы, существование Z0- частицы означает, что слабое взаимодействие может не сопровождаться переносом электрического заряда.

В создании теории электрослабого взаимодействия ключевую роль сыграло понятие спонтанного нарушения симметрии. Идеей спонтанного нарушения симметрии Вайнберг и Салам соединили электромагнетизм и слабое взаимодействие в единой теории калибровочного поля. В теории Вайнберга-Салама представлено всего 4 поля: электромагнитное и 3 поля, соответствующие слабым взаимодействиям. Кроме того, было введено постоянное на всем пространстве скалярное поле (так называемое поле Хиггса), с которым частицы взаимодействуют по-разному, что и определяет различие их масс.

Наиболее убедительная экспериментальная проверка новой теории заключалась в подтверждении существования гипотетических W- и Z-частиц. Их открытие в 1983 г. стало возможным только с созданием очень мощных ускорителей нового типа и означало торжество теории Вайнберга-Салама. Было окончательно доказано, что электромагнитное и слабое взаимодействие в действительности были просто 2 компонентами единого электрослабого взаимодействия. В 1979 г. Вайнбергу, Саламу, Глэшоу была присвоена Нобелевская премия за создание теории электрослабого взаимодействия.

Квантовая хромодинамика

Следующим шагом на пути познания фундаментальных взаимодействий было создание теории сильного взаимодействия. Для этого было необходимо придать черты калибровочного поля сильному взаимодействию. Сильное взаимодействие можно представлять как результат обмена глюонами, который обеспечивает связь кварков в адроны.

Замысел здесь состоит в следующем. Каждый кварк обладает аналогом электрического заряда, служащим источником глюонного поля. Его назвали цветом. Как и в случае с термином “кварк”, термин “цвет” выбран произвольно и никакого отношения к обычному цвету не имеет.

Если электромагнитное поле порождается зарядом только одного сорта, то более сложное глюонное поле создается 3 различными цветовыми зарядами. Каждый кварк “окрашен” в один из 3 возможных цветов, которые (совершенно произвольно) назвали красным, зелёным и синим. И соответственно, антикварки бывают антикрасные, антизелёные и антисиние.

На следующем этапе теория сильного взаимодействия развивалась по той же схеме, что и теория слабого взаимодействия. Требование локальной калибровочной симметрии (т.е. инвариантности относительно изменений цвета в каждой точке пространства) приводит к необходимости введения компенсирующих силовых полей. Всего требуется 8 новых компенсирующих силовых полей. Частицами-переносчиками этих полей являются глюоны. Т.о., из теории следует, что должно быть 8 различных типов глюонов. Как и фотон, глюоны имеют нулевую массу покоя и спин =1. Глюоны также имеют различные цвета, но не чистые, а смешанные (например, сине-антизелёный), т.е. глюоны состоят из цвета и антицвета. Поэтому испускание или поглощение глюона сопровождается изменением цвета кварка (“игра цветов”). Так, например, красный кварк, теряя красно-антисиний глюон, превращается в синий кварк. В протоне 3 кварка постоянно обмениваются глюонами, изменяя свой цвет. Однако эти изменения подчиняются жёсткому правилу: в любой момент времени “суммарный” цвет 3 кварков должен представлять собой белый цвет; т.е. сумму “красный + зелёный + синий”. Это распространяется и на мезоны.

С точки зрения квантовой хромодинамики (квантовой теории цвета) сильное взаимодействие есть не что иное, как стремление поддерживать определённую абстрактную симметрию природы: сохранение белого цвета всех адронов при изменении цвета их составных частей. Квантовая хромодинамика великолепно объясняет правила, которым подчиняются все комбинации кварков, взаимодействие глюонов между собой (глюон может распадаться на 2 глюона или 2 глюона слиться в 1-поэтому и появляются нелинейные члены в уравнении глюонного поля), взаимодействие кварков и глюонов (кварки покрыты облаками глюонов и кварк –антикварковых пар), сложную структуру адрона, состоящего из “одетых” в облака кварков и т.д.

Великое объединение

С созданием квантовой хромодинамики появилась надежда на построение единой теории всех (или хотя бы 3 из 4) фундаментальных взаимодействий. Модели, единым образом описывающие хотя бы 3 из 4 фундаментальных взаимодействий, называются моделями Великого объединения. Теоретические схемы, в рамках которых объединяются все известные типы взаимодействий, называются моделями супергравитации.

В 70-90-е г.г. было разработано несколько конкурирующих между собой теорий Великого объединения. Все они основаны на одной и той же идее. Если электрослабое и сильное взаимодействия в действительности представляют собой лишь 2 стороны Великого единого взаимодействия, то последнему должно так же соответствовать калибровочное поле с некоторой сложной симметрией. Она (симметрия) должна быть достаточно общей, способной охватить все калибровочные симметрии, содержащиеся и в квантовой хромодинамике, и в теории электрослабого взаимодействия. Отыскание такой симметрии - главная задача на пути создания единой теории сильного и электрослабого взаимодействия. Но существуют разные подходы, порождающие конкурирующие варианты теории Великого объединения.

Тем не менее все эти варианты имеют ряд общих особенностей. Во-первых, во всех гипотезах кварки и лептоны – носители сильного и электрослабого взаимодействий – включаются в единую теоретическую схему. До сих пор они рассматривались как совершенно различные объекты. Во-вторых, привлечение абстрактных калибровочных симметрий приводит к открытию новых типов полей, обладающих новыми свойствами, например, способностью превращать кварки в лептоны.

В простейшем варианте теории Великого объединения для превращения кварков в лептоны требуется 24 поля. 12 из квантов этих полей уже известны: фотон, 2 W- частицы, Z- частица и 8 глюонов. Остальные 12 квантов – новые сверхтяжёлые промежуточные бозоны, объединённые общим названием X и Y – частицы (обладающие цветом и электрическим зарядом). Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами. Следовательно, X и Y – частицы могут превращать кварки в лептоны (и наоборот).

На основе теорий Великого объединения предсказаны по крайней мере 2 важные закономерности, которые могут быть проверены экспериментально: нестабильность протона и существование магнитных монополей. Экспериментальное обнаружение распада протона и магнитных монополей могло бы стать веским доводом в пользу теорий Великого объединения. На проверку этих предсказаний направлены усилия экспериментаторов. Обнаружение распада протона могло бы стать самым великим экспериментом ХХ века. Но пока ещё нет твёрдо установленных экспериментально данных на этот счет.

А о прямом экспериментальном обнаружении X- и Y- бозонов речь пока и вовсе не идёт. Дело в том, что теории Великого объединения имеют дело с энергией частиц выше 10 14 ГэВ. Эта очень высокая энергия. Трудно сказать, когда удастся получить частицы столь высоких энергий в ускорителях. Современные ускорители с трудом достигают энергии 100 ГэВ. И потому основной областью применения и проверки теорий Великого объединения является космология. Без этих теорий невозможно описать раннюю стадию эволюции Вселенной, когда температура первичной плазмы достигала 10 27 К. Именно в таких условиях могли рождаться и аннигилировать сверхтяжёлые бозоны Х и Y.

Но объединение 3 из 4 фундаментальных взаимодействий – это ещё не единая теория в подлинном смысле слова. Ведь остаётся ещё гравитация. Теории супергравитации базируются на идее суперсимметрии, т.е. такого перехода от глобальной калибровочной симметрии к локальной, который бы позволил переходить от фермионов к бозонам и наоборот. В теориях суперсимметрии возникла также идея о введении новых дополнительных измерений (10,11 или даже 26) пространства, которые позволят описать все проявления свойств вещества и переносчиков взаимодействий. Только 3 из них проявляются в нашем мире, а остальные остались скрученными, замкнутыми в пространстве 10 -33 см. Вместе с тем на пути объединения гравитации с остальными фундаментальными взаимодействиями пока ещё остаётся много проблем.

Создание и подтверждение теорий Великого объединения и супергравитации ожидается буквально со дня на день. В определённом смысле это будет означать конец физической науки как науки о фундаментальных основаниях материи.

Но не исключены и другие варианты развития физики ХХ1 в. - открытие новых фундаментальных взаимодействий, новых субкварковых частиц, появления иных трактовок единства материи. Особенно значимы на этом пути те необычные представления, которые сейчас складываются там, где микромир оказывается связанным с мегомиром, ультрамалое с ультрабольшим, физика с астрономией и космологией.