- •§1. Экспериментальные основы квантовой механики
- •§2. Классическое и квантовое описание системы
- •§3. Принцип неопределенности
- •§4. Полный набор динамических переменных
- •§5. Постулаты квантовой механики
- •§6. Роль классической механики в квантовой механике
- •§7. Волновая функция и ее свойства
- •§8. Принцип суперпозиции состояний
- •§9. Понятие о теории представлений
- •§10. Операторы в квантовой механике
- •Транспонированный оператор
- •§11. Собственные функции и собственные значения эрмитовых операторов. Случай дискретного и непрерывного спектра
- •§12. Среднее значение измеряемой величины
- •§13. Вероятность результатов измерения
- •§14. Коммутативность операторов и одновременная измеримость физических величин
- •§15. Операторы координаты , импульса , момента импульса , энергии
- •§16. Решение задачи на собственные функции и собственные значения для оператора
- •§17. Решение задачи на собственные функции и собственные значения для оператора
- •§ 18. Вычисление коммутаторов, содержащих операторы
- •§ 19. Волновое уравнение
- •§ 20. Производная оператора по времени
- •§ 21. Интегралы движения в квантовой механике
- •§22. Флуктуации физических величин
- •§ 23. Неравенство Гейзенберга
- •§ 24. Оператор Гамильтона различных систем
- •§ 25. Стационарное состояние различных систем
- •§ 26. Решение волнового уравнения в случае свободной материальной точки
- •§ 27. Решение волнового уравнения в случае бесконечно глубокой потенциальной ямы
- •§ 28. Потенциальный барьер конечной высоты
- •§ 29. Вид операторов и в декартовых и сферических координатах
- •§ 30. Коммутационные соотношения с оператором
- •§ 31. Собственные функции и собственные значения операторов и
- •§ 32. Собственный механический момент (спин)
- •§ 33. Операторы и и их свойства
- •§ 34. Спиновая переменная волновой функции
- •§ 35. Матрицы Паули и их свойства
- •§ 36. Уравнение Паули Мы писали волновое уравнение в виде
- •§ 37. Принцип тождественности
- •§ 38. Оператор перестановки и его свойства
- •§39. Симметричное и антисимметричное состояния
- •§40. Обменное взаимодействие
- •§41. Основное состояние атома гелия
- •§42. Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: нулевое и первое приближения
- •§43. Стационарная теория возмущений в случае невырожденного дискретного энергетического спектра: второе приближение
- •§44. Критерий применимости теории возмущений
- •§45. Стационарная теория возмущений в случае близких энергетических уровней.
- •Задачи по курсу «Квантовая статистика» (Часть I) и их решение
- •Вопросы для экзамена по квантовой механике (программа минимум).
§3. Принцип неопределенности
Две формулировки:
В микромире понятие “траектория” отсутствует
Канонически сопряженные величины одновременно неизмеримы
В трехмерном пространстве канонически сопряженные величины будут:
px и x
py и y
pz и z
Здесь n=3. Имеем 3 одновременно измеряемые динамические переменные. Например:
px. py. pz
x, y, z
x, y, pz и тд.
§4. Полный набор динамических переменных
Полный набор динамических переменных – это наибольший набор независимых одновременно измеряемых динамических переменных. Измерение полного набора динамических переменных полностью определяет состояние квантово-механической системы. Число динамических переменных в квантовой системе - n и по сравнению с классической системой (2n) уменьшается в 2 раза. Максимальный набор – это значит, что к этому набору не может быть добавлена ни одна другая переменная, которая не являлась бы их функцией. В этом случае они не зависимы. Каждая из этих переменных не является функцией другой переменной из этого же набора. Заметим, что здесь зависимость не линейная (как в линейной алгебре), а функциональная.
§5. Постулаты квантовой механики
Часто выделяют 4 постулата:
Постулат о волновой функции.
Каждой системе (состоянию кв.-мех. системы) может быть поставлена в соответствие волновая функция динамических переменных (из полного набора) и времени, полностью описывающей состояние системы.
Динамические переменные одновременно
измеримы.
- n – мерный вектор
динамических переменных; функция
динамических переменных и времени
- описывает эволюцию квантово-механических
систем. классической механике задание
2n динамических
переменных полностью определяет
состояние системы через функцию
Гамильтона. В квантово-механической
системе описывается эволюция системы
через
- функцию от n динамических
переменных.
О связи физических величин и объектов математики (операторов).
Каждой физической величине (наблюдаемой)
ставится в соответствие оператор:
.
Связь между результатами измерения физической величины
и значением оператора
(т. е. решением математических задач)
Пусть
- значение физической величины
,
которое получено в результате измерения
системы, находящейся в i-том
квантовом состоянии.
является одним из собственных значений
оператора
.
Это задача на собственные функции и
собственные значения. Задача определяет
собственные значения
,
соответствующие
и определяет собственные функции
,
соответствующие собственным значениям
.
Если собственные значения образуют
дискретное множество, то говорят о
дискретном спектре. Если собственные
значения образуют непрерывное множество,
то спектр непрерывный.
Определение среднего значения физической величины
Здесь
введено понятие скалярного произведения
для функций из гильбертова пространства.
Гильбертово пространство – это
пространство квадратично интегрируемых
функций (нормируемых функций). Если
- квадратично интегрируемые функции,
тогда:
Это определение для - декартовых переменных. Для перехода к другой системе координат вводится якобиан перехода. Значок «*» означает комплексное сопряжение.
Это аналог длины в векторном пространстве.
