
- •Способы окускования железорудных материалов
- •Технология агломерации железных руд.
- •Горение топлива и окислительно-восстановительные процессы при агломерации.
- •Твердофазные химические реакции
- •Плавление шихты и кристаллизация расплава при агломерации
- •Газодинамические и тепловые процессы при агломерации.
- •Поведение попутных элементов при агломерации.
- •Металлургические свойства агломерата
- •Технико-экономические показатели процесса агломерации
- •Устройство агломерационных цехов. (рис в лекции)
- •Устройство агломерационной машины.
- •Технология (схема) производства окатышей.
- •Формирование сырых окатышей.
- •Высокотемпературное упрочнение окатышей
- •Металлургические свойства окатышей
- •Поведение попутных элементов при получении окатышей.
- •Технико-экономические показатели процесса производства железорудных окатышей.
- •21,11. Ресурсосбережение при производстве окатышей, агломерата
- •23. Устройство цехов для производства окатышей.
- •24. Агрегаты для окомкования железорудных материалов.
- •25. Агрегаты для высокотемпературного обжига окатышей.
- •26. Сравнение металлургических свойств агломерата и окатышей.
- •27. Термодинамика восстановления окислов железа
- •28. Процессы удаления влаги, летучих и разложения плавильных материалов.
- •29. Эффективность использования офлюсованных материалов.
- •30. Восстановление кремния и условия выплавки кремнистых чугунов и ферросплавов.
- •31. Восстановление марганца и условия выплавки марганцевых чугунов и фс.
- •32. Поведение цинка, щелочей и свинца в дп.
- •33. Восстановление в доменной печи фосфора.
- •34. Восстановление в доменной печи хрома, ванадия, титана.
- •35. Прямое и косвенное восстановление в доменной печи.
- •36. Реакция газификации углерода и ее роль в процессах восстановления.
- •37. Показатели развития процессов восстановления в доменной печи
- •38. Технико-экономические показатели доменного производства.
- •39. Связь показателей восстановления и расхода кокса.
- •40. Механизм процесса восстановления
- •41. Влияние различных факторов на скорость восстановления.
- •42. Науглероживание железа в доменной печи.
- •43. Качество чугуна.
- •44. Шлакообразование в доменной печи.
- •45. Влияние шлакового режима на показатели доменной плавки
- •Десульфурация Чугуна
- •49. Внедоменная десульфурация чугуна.
- •50. Теплообмен в доменной печи.
- •51. Тепловые балансы и показатели тепловой работы печи.
- •52. Горение топлива у фурм доменной печи.
- •53. Окислительная зона.
- •54. Температура в горне (рис 125 стр. 246)
- •55. Формирование печного газа и изменение его состава при движении от фурм к колошнику.
- •56. Движение газа в слое кусковых материалов.
- •57. Распределение шихты в печи и ее движение.
- •58. Эффективность повышения давления газов в печи.
- •59. Нагрев дутья
- •60.Увлажнение дутья.
- •61. Обогащение дутья кислородом
- •62. Вдувание природного газа в горн печи
- •63. Вдувание мазута в горн печи
- •64. Вдувание угля в горн печи
- •65 Комбинированное дутье доменных печей
- •66. Вдувание горячих восстановительных газов
- •67. Профиль доменной печи
- •68. Футеровка доменной печи.
- •69. Охлаждение доменной печи.
- •70. Фурменный прибор.
- •71. Устройство чугунной и шлаковой леток.
- •72. Загрузочное устройство доменных печей.
- •73. Чугуновозные и шлаковозные ковши.
- •74. Разливочные машины.
- •75. Воздухонагреватели
- •76 Очистка доменного газа
- •77, 92. Предпосылки развития процессов металлургии железа
- •78. Классификация процессов металлургии железа
- •79. Получение губчатого железа в шахтных печах
- •80 Железорудное сырье для процессов металлургии железа.
- •81. Топливо и восстановитель для металлургии железа
- •82 Получение губчатого в периодически действующих ретортах.
- •83 Получение губчатого железа во вращающихся печах, на конвейерных машинах
- •84 Получение крицы
- •85 Восстановление в аппаратах кипящего слоя
- •86 Вторичное окисление и пирофорность губчатого железа
- •87 Свариваемость кусков шихты при их восстановлении в шахтных печах металлизации
- •88 Особенности процесса металлизации с использованием твердого топлива.
- •89. Получение жидкого металла по схеме «восстановление-плавление»
- •90. Получение жидкого металла по схеме «плавление восстановление»
- •93. Технико-экономические показатели металлургия железа
Технология (схема) производства окатышей.
Процесс производства окатышей состоит из двух стадий.
Получение сырых (мокрых) окатышей
Упрочнение, которое включает
подсушку при t=300-600C
обжиг при t=1200-1350C
Исходную шихту (возврат, концентрат, известняк) загружают в бункера, откуда при помощи дозаторов она подается на сборный транспортер и поступает в смесительный барабан. После смешивания шихта поступает по другому транспортеру в окомкователь или гранулятор. Для лучшего окомкования и обеспечения прочности к шихте добавляют бентонит (мелкодисперсная глина) в количестве 0,3-1,5% и воду в количестве 8-10%. В грануляторе при круговом движении шихта при помощи бентонита и воды постепенно превращается в гранулы – комки, достигающие 10-20 мм в диаметре. Наиболее распространен тарельчатый гранулятор. Также часто применяют барабанный, а иногда – конусный гранулятор. Тарельчатые грануляторы выпускают диаметром 5,5-7,0 м, они обеспечивают производительность 125-150 т/час. Оптимальных условий окатывания достигают подбором угла наклона тарели 40-60 и частоты вращения 6-9 об/мин.
После гранулятора сырые окатыши падают в обжиговую машину. Обычно применяют ленточную конвейерную машину, подобную агломерационной. Реже применяются шахтные печи, вращающиеся трубчатые печи, последовательно расположенные колосниковая решетка и вращающаяся трубчатая печь. В этих агрегатах окатыши проходят сушку, подогрев и обжиг. Иногда сушку осуществляют в отдельном агрегате. У конвейерных машин ширина палетт составляет 3-4 м, рабочая площадь спекания 100-500м2, производительность их равна 2500-9000т/сут. Верх ленты перекрыт камерами в соответствии с делением на зоны сушки, обжига и охлаждения. Зона обжига составляет 50% от общей площади машины. В зоне сушки окатыши подогревают до 250-400С газами, поступающими из зон обжига и охлаждения. Циркуляция газов и удаление их в дымовую трубу осуществляется вентиляторами. В зоне обжига окатыши нагреваются до 1200-1350С продуктами сгорания газообразного или жидкого (мазута) топлива, посасываемыми через слой окатышей на колосниковой решетке машины. В зоне охлаждения окатыши охлаждаются принудительно подаваемым через колосниковую решетку воздухом. Охлажденные окатыши поступают на грохот. Фракцию более 10 мм оправляют в доменный цех, а 0-10 мм – возврат.
Формирование сырых окатышей.
Сырые окатыши формируются при окатывании тонкодисперсного железорудного материала, увлажненного до определенной степени. В системе железорудный материал – вода стремление к уменьшению энергии реализуется уменьшением поверхностного натяжения на границе раздела фаз (при взаимодействии с водой) и укрупнении частиц (в результате их сцепления). Таким образом, эта система обладает определенным термодинамическим стремлением к окомкованию.
Процесс формирования гранул из железорудных концентратов включает смачивание, капиллярное насыщение, осмос, набухание, поверхностное диспергирование и др.
Главный фактор, обеспечивающий прочность сцепления – удельная поверхность материала, которая тем больше, чем больше содержание наиболее мелких фракций.
Другой фактор – содержание влаги в шихте. Силы сцепления пропорциональны максимальной молекулярной влагоемкости (ММВ), которая характеризует энергетическое состояние концентрата. Структурное состояние концентрата (его пористость связано с величиной максимальной капиллярной влагоемкости (МКВ). Предложено оценивать способность к окомкованию показателем комкуемости (К).
К = Wммв/(Wммв- Wмкв).
Wммв и Wмкв – соответственно показатели максимальных молекулярной и капиллярной влагоемкости материала.
Для обеспечения достаточной прочности сырых окатышей добавляют связующие добавки (бентонит, его смесь с водой, известь, хлористый кальций, железный купорос, гуминовые вещества). Наибольшее применение нашел бентонит. При увлажнении он хорошо поглощает воду и увеличивается в объеме в 15-20 раз. При увлажнении он образует гели с сильно развитой удельной поверхностью (600-900 м2/т), которая в 7-10 раз превышает поверхности частиц других сортов глины. Но запасы бентонита ограничены и он относительно дорог, поэтому необходимо искать более распространенные и дешевые связующие материалы.