Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к ЭКЗ. вопросам по физике.docx
Скачиваний:
7
Добавлен:
27.09.2019
Размер:
874.19 Кб
Скачать

Взаимодействие точечных зарядов. Закон Кулона

Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Ш. Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора – крутильных весов, отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10–9 Н.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Силы взаимодействия одноименных и разноименных зарядов

На основании многочисленных опытов Кулон установил следующий закон:

Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.

Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл). Кулон – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения. Коэффициент k в системе СИ обычно записывают в виде: где электрическая постоянная.

В системе СИ элементарный заряд e равен: e = 1,602177·10–19 Кл ≈ 1,6·10–19 Кл.

О

пыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции. Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

Принцип суперпозиции электростатических сил

№ 10

Электрический ток в газах. Самостоятельный и несамостоятельный разряды. Плазма

Электрический ток в газах

В обычных условиях газ - это диэлектрик, т.е. состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока.Газ-проводник - это ионизированный газ. Ионизированный газ обладает электронно-ионной проводимостью.Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях.Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.

Ионизация газа - это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.

Газовый разряд - это эл.ток в ионизированных газах. Носителями зарядов являются положительные ионы и электроны. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля. Если газ перестает быть проводником, то ионизация прекращается, это происходит в следствие рекомбинации ( воссоединения противоположно заряженных частиц) Рекомбинация- образование нейтральных атомов и молекул из свободных электронов положительных атомных или молекулярных ионов (процесс, обратный ионизации) Существует самостоятельный и несамостоятельный газовый разряд:

Несамостоятельный газовый разряд. Если действие ионизатора прекратить , то прекратится и разряд.Когда разряд достигает насыщения - график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора.

Самостоятельный газовый разряд. В этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации.

Электрический пробой газа- процесс перехода несамостоятельного газового разряда в самостоятельный.

Самостоятельный газовый разряд бывает 4-х типов: 1. тлеющий - при низких давлениях(до нескольких мм рт.ст.) -наблюдается в газосветных трубках и газовых лазерах. 2. искровой - при нормальном давлении и высокой напряженности электрического поля (молния - сила тока до сотен тысяч ампер). 3. коронный - при нормальном давлении в неоднородном электрическом поле ( на острие ).4. дуговой - большая плотность тока, малое напряжение между электродами ( температура газа в канале дуги -5000-6000 градусов Цельсия); наблюдается в прожекторах, проекционной киноаппаратуре. Эти разряды наблюдаются: тлеющий - в лампах дневного света; искровой - в молниях; коронный - в электрофильтрах, при утечке энергии; дуговой - при сварке, в ртутных лампах.

Плазма

Плазма- это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера - слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма - в газоразрядных лампах. Плазма бывает: Низкотемпературная - при температурах меньше 100 000К; высокотемпературная - при температурах больше 100 000К. Основные свойства плазмы: высокая электропроводность; сильное взаимодействие с внешними электрическими и магнитными полями. Интересно, что 99% вещества во Вселенной - плазма.

№ 11

Электрический ток в электролитах. Законы электролиза.

Электрический ток в электролитах

Электролиты -проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов в расплавленном состоянии, а также некоторые твердые вещества. Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду).