Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
A4_33_33_33_33_33_33_33_33_33_33_33.docx
Скачиваний:
55
Добавлен:
26.09.2019
Размер:
316.45 Кб
Скачать

Трансформация у про- и эукариот

Трансформация бактерий — это перенос ДНК, изолированной из одних клеток в другие. О явлении трансформации было сказано в гл. 6. При трансформации ДНК, выделенную из клеток одного штамма, поглощают клетки другого штамма — реципиента. С помощью генетических маркеров об этом можно судить по изменению фенотипа реципиента.

Трансформация возможна у целого ряда бактерий: Diplococcus, Hemophilus, Neisseria, Bacillus, а также у актиномицетов, цианобактерий. и других и имеет общие закономерности. Лучше всего она изучена у таких бактерий, как D. pneumoniae, В. subtilis, Н. influenzae. В процессе трансформации рассматривают следующие

стадии.

Для того чтобы ДНК проникла в бактериальные клетки, они должны находиться в состоянии компетентности. Возникновению компетентности, приобретаемой лишь частью клеток культуры обычно в середине логарифмической стадии роста, способствует особый белок. В присутствии хлорамфеникола — ингибитора белкового синтеза — состояние компетентности не развивается. В то же время антибиотик, добавленный к компетентной культуре, компетентности не подавляет. Следовательно, белок, стимулирующий компетентность, вырабатывается в ходе роста культуры. Сначала ДНК связывается с поверхностью компетентных клеток. Обычно трансформирующая ДНК имеет молекулярную массу около 1 • 107 Д, что составляет около 0,5 % бактериальной хромосомы. ДНК, связанная с компетентными клетками, расщепляется

специальными нуклеазами до фрагментов с молекулярной массой 4—5- 106Д. После этого фрагменты ДНК проникают в клетку. Некоторые бактерии, в частности пневмококки, могут неспецифически поглощать ДНК из разных источников. В то же время, например Hemophilus, поглощает только свою, гомологическую ДНК. Фрагменты менее 5- 105 Д в клетку не проникают. После попадания в бактерию двуцепочечная ДНК превращает-ся в одноцепочечную: одна нить ДНК деградирует. На заключительной стадии происходит интеграция одноцепочечного трансформирующего фрагмента с ДНК клетки-реципиента. При этом репликация не требуется, и включаемый фрагмент физически объединяется с ДНК реципиента. Весь процесс трансформации завершается в течение 10—30 мин. Частота трансформации разных бактерий составляет около 1 %. Для некоторых бактерий показана трансформация в естественных условиях, например в организме инфицированного животного — для Diplococcus pneumoniae, а также в условиях культуры — для Bacillus subtilis. Это означает, что трансформация — не экзотический прием генетического анализа, а естественный биологический процесс. В то же время в последние годы в связи с развитием генной инженерии широко применяется плазмидная, или векторная, трансформация, которая заключается во введении в клетки бактерий, а также эукариот генов, интегрированных в естественные или искусственные плазмиды.

Первичная и вторичная структуры днк

Первичная структура ДНК - порядок чередования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинукпеотидной цепи. Каждая фосфатная группа в полинукпеотидной цепи, за исключением фосфорного остатка на 5'-конце молекулы, участвует в образовании двух эфирных связей с участием 3'- и 5'-углеродных атомов двух соседних дезоксирибоз, поэтому связь между мономерами обозначают 3', 5'-фосфодиэфирной. Концевые нуклеотиды ДНК различают по структуре: на 5'-конце находится фосфатная группа, а на 3'-конце цепи - свободная ОН-группа. Эти концы называют 5'- и 3'-концами. Линейная последовательность дезоксирибонуклеотидов в полимерной цепи ДНК обычно сокращённо записывают с помощью однобуквенного кода, например -A-G-C-T-T-A-C-A- от 5'- к 3'-концу.

В каждом мономере нуклеиновой кислоты присутствует остаток фосфорной кислоты. При рН 7 фосфатная группа полностью ионизирована, поэтому in vivo нуклеиновые кислоты существуют в виде полианионов (имеют множественный отрицательный заряд). Остатки пентоз тоже проявляют гидрофильные свойства. Азотистые основания почти нерастворимы в воде, но некоторые атомы пуринового и пиримидинового циклов способны образовывать водородные связи.

Вторичная структура ДНК. В 1953 г. Дж. Уотсоном и Ф. Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спирали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидньхе цепи в ней антипараллельны (рис. 4-6), т.е. если одна из них ориентирована в направлении 3'→5', то вторая - в направлении 5'→3'. Поэтому на каждом из концов молекулы ДНК расположены 5'-конец одной цепи и 3'-конец другой цепи. Все основания цепей ДНК расположены внутри двойной спирали, а пентозофосфатный остов - снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счёт водородных связей между комплементарными пуриновыми и пиримидиновыми азотистыми основаниями А и Т (две связи) и между G и С (три связи) пара содержит по три кольца, поэтому общий размер этих пар оснований одинаков по всей длине молекулы. Водородные связи при других сочетаниях оснований в паре возможны, но они значительно слабее. Последовательность нуклеотидов одной цепи полностью комплементарна последовательности нуклеотидов второй цепи. Поэтому, согласно правилу Чаргаффа (Эрвин Чаргафф в 1951 г. установил закономерности в соотношении пуриновых и пиримидиновых оснований в молекуле ДНК), число пуриновых оснований (А + G) равно числу пиримидиновых оснований (Т + С).

Комплементарые основания уложены в стопку в сердцевине спирали. Между основаниями двухцепочечной молекулы в стопке возникают гидрофобные взаимодействия, стабилизирующие двойную спираль.

Такая структура исключает контакт азотистых остатков с водой, но стопка оснований не может быть абсолютно вертикальной. Пары оснований слегка смещены относительно друг друга. В образованной структуре различают две бороздки - большую, шириной 2,2 нм, и малую, шириной 1,2 нм. Азотистые основания в области большой и малой бороздок взаимодействуют со специфическими белками, участвующими в организации структуры хроматина.