Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физикка.doc
Скачиваний:
34
Добавлен:
26.09.2019
Размер:
1.65 Mб
Скачать

52 Вопрос

Переме́нный ток, AC (англ. alternating current — переменный ток) — электрический ток, который периодически изменяется по модулю и направлению.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону. В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.

Переменный ток получают путем вращения рамки в магнитном поле. Принцип действия — явление электромагнитной индукции (появление индукционного тока в замкнутом контуре при изменении магнитного потока). В генераторах переменного тока вращается якорь из магнита (электромагнита) с несколькими полюсами (2, 4, 6 и т. д.), а с обмоток статора снимается переменное напряжение.

Рассмотрим последовательно процессы, происходящие на участке цепи, содержащем резистор, катушку индуктивности и конденсатор, к концам которого приложено переменное напряжение

где Um — амплитуда напряжения

рис 215

1. Переменный ток, текущий через резистор сопротивлением R (L —• О, С—> 0) (рис. 215, а). При выполнении условия квазистационарности ток через резистор определяется законом Ома: где амплитуда силы тока / т = Для наглядного изображения соотношений между переменными токами и напряжениями воспользуемся jwemo-дом векторных диаграмм. На рис. 215,6 дана векторная диаграмма амплитудных значений тока /|п и напряжения Um на резисторе (сдвиг фаз между /ш и Um равен нулю).

2. Переменный ток, текущий через катушку индуктивностью L (R -> 0, С—≫ 0) (рис. 216, а). Если в цепи приложено переменное напряжение то в ней потечет переменный ток, в результате чего возникнет ЭДС самоиндукции ≪fs = —L— . Тогда закон Ома для рассматриваемого участка цепи имеет вид

Рис.216

Так как внешнее напряжение приложено к катушке индуктивности, то

(149.3)

есть падение напряжения на катушке. Из уравнения (149.2) следует, что После интегрирования, учитывая, что

постоянная интегрирования равна нулю (так как отсутствует постоянная составляющая тока), получим

где /In =

Величина RL = (149.5) называется реактивным индуктивным сопротивлением (или индуктивным сопротивлением). Из выражения (149.5) вытекает, что для постоянного тока

(омега = 0) катушка индуктивности не имеет сопротивления. Подстановка значения Um = в выражение (149.2) с учетом (149.3) приводит к следующему значению падения напряжения на

катушке индуктивности:

(149.6) Сравнение выражений (149.4) и (149.6) приводит к выводу, что падение напряжения UL опережает по фазе ток I, текущий через катушку, на (пи/2), что и показано на векторной диаграмме (рис. 216,б).

3. Переменный ток, текущий через конденсатор емкостью С (R —> 0, L —> 0) (рис. 217, а). Если переменное напряжение (149.1) приложено к конденсатору, то он все время перезаряжается, и в цепи течет переменный ток. Так как все внешнее напряжение приложено к конденсатору, а сопротивлением подводящих проводов можно пренебречь, то

рис 217

Сила тока

(149.7)

а называется реактивным емкостным

сопротивлением (или емкостным сопротивлением). Для постоянного тока (ш = 0) Rc = оо, т. е. постоянный ток через конденсатор течь не может. Падение напряжения на конденсаторе

(149.8) Сравнение выражений (149.7) и (149.8) приводит к выводу, что падение напряжения Uc отстает по фазе от текущего через конденсатор тока I на (пи/2).

Это показано на векторной диаграмме (рис. 217, б).

4. Цепь переменного тока, содержащая последовательно включенные резистор, катушку индуктивности и конденсатор. На рис. 218, а представлен участок цепи, содержащий резистор

сопротивлением R, катушку индуктивностью L и конденсатор емкостью С, к концам которого приложено переменное напряжение (149.1). В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL и Uc.

На рис. 218,6 представлена векторная диаграмма амплитуд падений напряжений на резисторе ( UR), катушке ( UL) и конденсаторе ( Uc). Амплитуда Um приложенного напряжения должна быть равна векторной сумме амплитуд этих падений напряжений. Как видно из рис. 218, б, угол ф определяет разность фаз между напряжением и силой тока. Из рисунка следует, что

(149.9) Из прямоугольного треугольника полу- откуда амплитуда силы тока имеет значение

(149.10) Следовательно, если напряжение в цепи изменяется по закону U = Umcos t, то в цепи течет ток

(149.11)

где фи и Im определяются соответственно формулами (149.9) и (149.10). Величина

(149.12) называется полным сопротивлением цепи, а величина — реактивным сопротивлением.

Рассмотрим частный случай, когда в цепи отсутствует конденсатор. В данном случае падения напряжений UR и UL в сумме равны приложенному напряжению U. Векторная диаграмма для

данного случая представлена на рис. 219, из которого следует, что

(149.13) рис 219

Выражения (149.9) и (149.10) совпадают с (149.13), если в них = 0, т.е. С= бесконечности. Следовательно, отсутствие конденсатора в цепи означает, что С= бесконечности, а не С= 0. Данный вывод можно трактовать следующим образом: сближая обкладки конденсатора до их полного соприкосновения, получим цепь, в которой конденсатор отсутствует расстояние между обкладками стремится к нулю, а емкость — к бесконечности.

53 вопрос

Волны - это изменение состояния среды (возмущения), распространяющиеся в этой среде и несущие с собой энергию и импульс без переноса вещества. Наиболее часто встречающиеся виды волн — упругие (звук) и электромагнитные (свет, радиоволны и другие).

Примером волнового движения может быть возмущение воды от падающих капель, которое распространяется в виде расширяющихся концентрических кругов.

Волновое уравнение: A = A0 cos(ωt + kx)

Волновое уравнение описывает распространение гармонических колебаний в пространстве. Характерными параметрами, описывающими гармоническую волну являются: A0 - амплитуда колебаний; ω - круговая частота (рад/с); период колебаний T (с), который связан с круговой частотой соотношением: T = 2π/ω; частота колебаний γ (Гц = 1/с) выражается через период: γ = 1/T; волновое число k = ω/v (где v- скорость распространения волны, измеряется в м/с); λ - длина (м) волны (λ = vT). Скорость распространения каждого вида волн зависит от свойств среды, в которой они распространяются. Если колебания совершаются поперек по отношению к направлению распространения волн, они называются поперечными, если вдоль - продольными.

Поперечные волны могут возникать в твердых телах. Электромагнитные волны, в том числе и свет, являются поперечными. Продольные волны могут возникать, как в твердых телах, так и в жидкостях и газах.

В общем случае волновое уравнение записывается в виде

,

где  — оператор Лапласа,  — неизвестная функция,  — время,  — пространственная переменная,  — фазовая скорость.

Волновой вектор — вектор, направление которого перпендикулярно фазовому фронту бегущей волны, а абсолютное значение равно волновому числу.

Волновой вектор обычно обозначается латинской буквой и величина его измеряется в обратных метрах (СИ) или обратных сантиметрах (СГС) (т.е. радианах на метр или радианах на сантиметр). (Следует быть внимательным, т.к. иногда может использоваться определение, отличающееся множителем , но дающее ту же физическую размерность).

Волновое число связано с длиной волны λ соотношением:

.Связь между волновым вектором и частотой задаётся законом дисперсии. Все возможные значения волновых векторов образуют обратное пространство или k-пространство.

Наиболее общим определением волнового вектора можно считать такое: волновой вектор есть градиент фазы волны:

Выведем уравнение волны, которое позволит определить смещение каждой точки среды в любой момент времени при распространении гармонической волны.

Сделаем это на примере волны, бегущей по длинному тонкому резиновому шнуру.

Ось ОХ направим вдоль шнура, а начало отсчета свяжем с левым концом шнура. Смещение колеблющейся точки шнура от положения равновесия обозначим буквой s. Для описания волнового процесса нужно знать смещение каждой точки шнура в любой момент времени. Следовательно, надо знать вид функции      S = s(x, t). Заставим конец шнура (точка с координатой х = 0) совершать гармонические колебания с циклической частотой (0. Колебания этой точки будут происходить по закону:  s = sm sin t,    (6.3)

Колебания распространяются вдоль шнура (оси ОХ) со cкоростью и в произвольную точку шнура с координатой прийдут спустя время Эта точка также начнет совершать гармонические колебания с частотой , но с запаздыванием на время  (рис. 6.10, б). Если пренебречь затуханием волны по мере ее распространения, то колебания в точке х будут происходить с той же амплитудой  sm, но с другой фазой:   Это и есть уравнение гармонической бегущей волны, распространяющейся в положительном направлении оси Ох.

54 вопрос

55 вопрос

Частным случаем интерференции являются стоячие волны — это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми час-

тотами и амплитудами, а в случае поперечных волн еще и одинаковой поляризацией.

Для вывода уравнения стоячей волны предположим, что две плоские волны распространяются навстречу друг другу вдоль оси ж в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат вы-

берем в точке, в которой обе волны имеют одинаковую начальную фазу, а отсчет времени начнем с момента, когда начальные фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распространяющейся вдоль положительного направления оси х, и волны, распространяющейся ей навстречу, будут иметь вид

(157.1)

k=2пи./ лямбда, следовательно уравнение стоячей волны:

Из уравнения стоячей волны (157.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты омега с амплитудой АСТ =модуль( ), зависящей от координаты х рассматриваемой точки.

В точках среды, где m=0,1,2… (157.3)

амплитуда колебаний достигает максимального значения, равного 2А. В точках среды, где

амплитуда колебаний обращается в

нуль. Точки, в которых амплитуда колебаний максимальна (Acr ~ 2А), называются пучностями стоячей волны, а точки, в которых амплитуда колебаний равна нулю (Ап. — 0), называются уз-

лами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают. Из выражений (157.3) и (157.4) получим соответственно координаты пучностей и узлов:

Из формул (157.5) и (157.6) следует, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны (лямбда/2). Расстояние между соседними пучностью и узлом стоячей волны равно (лямбда/4). В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе . все точки стоячей волны между двумя узлами колеблются с разными амплитудами, но с одинаковыми фазами . При переходе через узел множитель 2 A cos меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на (пи), т. е. точки, лежащие по разные стороны от узла, колеблются в противофазе. Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Если конец веревки закрепить неподвижно (например, к стене), то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной, образуя стоячую волну .На границе, где происходит отражение волны, в данном случае возникает узел. Будет ли на границе отражения узел

или пучность, зависит от соотношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения возникает пучность (рис. 224, а), если более плотная — узел (рис. 224, б). Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний с противоположными фазами, в результате чего получается узел.

рис 224

56 вопрос

Аку́стика (от греч. ἀκούω (аку́о) — слышу) — наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.

57 вопрос

Эффектом Доплера* называется изменение частоты колебаний, воспринимаемой приемником, при движении источника этих колебаний и приемника друг относительно друга. Например, из опыта известно, что тон гудка поезда повышается по мере его приближения к платформе и понижается при удалении, т. е. движение источника колебаний (гудка) относительно приемника (уха) изменяет частоту принимаемых колебаний.

* X. Доплер (1803—1853) — австрийский физик, математик и астроном.

 Для рассмотрения эффекта Доплера предположим, что источник и приемник звука движутся вдоль соединяющей их прямой; vист и vпр — соответственно скорости движения источника и приемника, причем они положительны, если источник (приемник) приближается к приемнику (источнику), и отрицательны, если удаляется. Частота колебаний источника равна v0.

1. Источник и приемник покоятся относительно среды, т. е. vист = vпр=0. Если v — скорость распространения звуковой волны в рассматриваемой среде, то длина волны =vT=v/v0. Распространяясь в среде, волна достигнет приемника и вызовет колебания его звукочувствительного элемента с частотой

Следовательно, частота v звука, которую зарегистрирует приемник, равна частоте v0, с которой звуковая волна излучается источником.

2. Приемник приближается к источнику, а источник покоится, т. е. vпр>0, vист=0. В данном случае скорость распространения волны относительно приемника станет равной v + vпр. Так как длина волны при этом не меняется, то

т. е. частота колебаний, воспринимаемых приемником, в (v+vпр)/v раз больше частоты колебаний источника.

3. Источник приближается к преемнику, а приемник покоится, т. е. vист >0, vпр=0.

Скорость распространения колебаний зависит лишь от свойств среды, поэтому за время, равное периоду колебаний источника, излученная им волна пройдет в направле­нии к приемнику расстояние vT (равное длине волны ) независимо от того, движется ли источник или покоится. За это же время источник пройдет в направлении волны расстояние vистT (рис. 224), т. е. длина волны в направлении движения сократится и станет равной '=—vистТ=(v—vист)T, тогда

т. е. частота  колебаний, воспринимаемых приемником, увеличится в v/(v – vист) раз. В случаях 2 и 3, если vист<0 и vпр<0, знак будет обратным.

4. Источник и приемник движутся относительно друг друга. Используя результаты, полученные для случаев 2 и 3, можно записать выражение для частоты колебаний, воспринимаемых приемником:

                                                                      (159.1)

причем верхний знак берется, если при движении источника или приемника происходит их сближение, нижний знак — в случае их взаимного удаления.

Из приведенных формул следует, что эффект Доплера различен в зависимости от того, движется ли источник или приемник. Если направления скоростей vпр и vист не совпадают с проходящей через источник и приемник прямой, то вместо этих скоростей в формуле (159.1) надо брать их проекции на направление этой прямой.

58 вопрос

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики и сделал попытку применить их к изменяющимся во времени электрическому и магнитному полям. Он обратил внимание на ассиметрию взаимосвязи между электрическими и магнитными явлениями. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку закона электромагнитной индукции, открытой Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, силовые линии которого замкнуты.

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рис. 2.6.1 и 2.6.2 иллюстрируют взаимное превращение электрического и магнитного полей.

Рис 2.6.1. Рис 2.6.2

Закон электромагнитной Гипотеза Максвелла. Изменяющееся эл. поле

индукции в трактовке Максвелла порождает магнитное

. Электромагнитные волны распространяются в веществе с конечной скоростью

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные: ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м.

Длина волны λ в синусоидальной волне свявзана со скоростью υ распространения волны соотношением λ = υT = υ / f, где f – частота колебаний электромагнитного поля, T = 1 / f.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных.

Вывод Максвелла о конечной скорости распространения электромагнитных волн находился в противоречии с принятой в то время теорией дальнодействия, в которой скорость распространения электрического и магнитного полей принималась бесконечно большой. Поэтому теорию Максвелла называют теорией близкодействия.

3. В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Поэтому объемные плотности электрической и магнитной энергии равны друг другу: wэ = wм.

Отсюда следует, что в электромагнитной волне модули индукции магнитного поля и напряженности электрического поля в каждой точке пространства связаны соотношением

4. Электромагнитные волны переносят энергию. При распространении волн возникает поток электромагнитной энергии. Если выделить площадку S (рис. 2.6.3), ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку протечет энергия ΔWэм, равная

ΔWэм = (wэ + wм)υSΔt.

Плотностью потока или интенсивностью I называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

Подставляя сюда выражения для wэ, wм и υ, можно получить:

Поток энергии в электромагнитной волне можно задавать с помощью вектора направление которого совпадает с направлением распространения волны, а модуль равен EB / μμ0. Этот вектор называют вектором Пойнтинга.

В синусоидальной (гармонической) волне в вакууме среднее значение Iср плотности потока электромагнитной энергии равно

где E0 – амплитуда колебаний напряженности электрического поля.

Плотность потока энергии в СИ измеряется в ваттах на квадратный метр (Вт/м2).

Существование давления электромагнитных волн позволяет сделать вывод о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля в единичном объеме выражается соотношением

где wэм – объемная плотность электромагнитной энергии, c – скорость распространения волн в вакууме. Наличие электромагнитного импульса позволяет ввести понятие электромагнитной массы.

Для поля в единичном объеме

Отсюда следует:

Это соотношение между массой и энергией электромагнитного поля в единичном объеме является универсальным законом природы. Согласно специальной теории относительности, оно справедливо для любых тел независимо от их природы и внутреннего строения.

Как показывает опыт, электромагнитные волны могут производить различные действия: нагревание тел при поглощении света, вырывание электронов с поверхности металла под действием света (фотоэффект). Это свидетельствует о том, что электромагнитные волны переносят энергию. Эта энергия заключена в распространяющихся в пространстве электрическом и магнитном полях.

В курсе электричества и магнетизма было показано, что объемная плотность энергии электрического поля равна

,

(1.1)

а магнитного поля –

,

(1.2)

где  и  – электрическая и магнитная постоянные. Таким образом, полная плотность энергии электромагнитной волны равна

.

(1.3)

Так как модули вектора напряженности электрического и индукции магнитного поля в электромагнитной волне связаны соотношением , то полную энергию можно выразить только через напряженность электрического поля или индукцию магнитного поля:

.

(1.4)

Из (1.4) видно, что объемная плотность энергии складывается из двух равных по величине вкладов, соответствующих плотностям энергии электрического и магнитного полей. Это обусловлено тем, что в электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры».

Плотность энергии электромагнитного поля можно представить в виде:

.

(1.5)

Формула (1.5) характеризует плотность энергии в любой момент времени в любой точке пространства.

Если выделить площадку с площадью s, ориентированную перпендикулярно направлению распространения волны, то за малое время Δt через площадку пройдет энергия , равная где  – скорость электромагнитной волны в вакууме.

Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии электромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

(в системе СГС), (в системе СИ),

где E и H — векторы напряжённости электрического и магнитного полей соответственно.

(в комплексной форме),

где E и H — векторы комплексной амплитуды электрического и магнитного полей соответственно.

Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то вектор S непрерывен на границе двух сред.

59 вопрос

Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается, если удаляется — длина волны увеличивается:

,

где  — частота, с которой источник испускает волны,  — скорость распространения волн в среде,  — скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

.

(1)

Аналогично, если приёмник движется навстречу волнам, он регистрирует их гребни чаще и наоборот. Для неподвижного источника и движущегося приёмника

,

(2)

где  — скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив вместо в формуле (2) значение частоты из формулы (1), получим формулу для общего случая:

.

В случае распространения электромагнитных волн (или других безмассовых частиц) в вакууме, формулу для частоты выводят из уравнений специальной теории относительности. Так как для распространения электромагнитных волн не требуется материальная среда, можно рассматривать только относительную скорость источника и наблюдателя[2][3].

где  — скорость света,  — скорость источника относительно приёмника (наблюдателя),  — угол между направлением на источник и вектором скорости в системе отсчёта приёмника. Если источник радиально удаляется от наблюдателя, то , если приближается — [4].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]