Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физикка.doc
Скачиваний:
34
Добавлен:
26.09.2019
Размер:
1.65 Mб
Скачать

43. Колебательный процесс. Виды колебаний . Гармонические колебания и их параметры.

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебательные процессы широко распространены в природе и технике, например качание маятника часов, переменный электрический ток и т.д. При колебательном движении маятника изменяется координата его

центра масс, в случае переменного тока колеблются напряжение и ток в цепи.

Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и др. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями.

Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему (систему, совер-

шающую колебания).Простейшим типом колебаний являются гармонические колебания —

колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Рассмотрение гармонических колебаний важно по двум причинам: 1) колебания, встречающиеся в природе и технике, часто близки к гармоническим; 2) различные периодические процессы (процессы,повторяющиеся через равные промежутки времени) можно представить как наложение гармонических колебаний.

Гармонические колебания изображаются графически методом вращающегося вектора амплитуды, или методом векторных диаграмм. Для этого из произвольной точки О, выбранной на оси х, под углом ip, равные начальной фазе колебания, откладывается вектор А, модуль которого равен амплитуде А рассматриваемого колебания Если этот вектор привести во вращение с угловой скоростью w0,

равной циклической частоте колебаний, то проекция конца вектора будет перемещаться по оси ж и принимать значения от —А до + А, а колеблющаяся величина будет изменяться со временем по закону Таким образом, гармоническое колебание можно представить проекцией на некоторую произвольно выбранную ось вектора амплитуды А, отложенного из произвольной точки оси под углом ц>, равным начальной фазе, и вращающегося с угловой скоростью w0 вокруг этой точки

44. Дифференциальное уравнение гармонических колебаний. Энергия гарм.Колеб.

- уравнение свободных гармонических колебаний (в дифференциальной форме).

Кинетическая энергия тела W:

Для вычисления потенциальной энергии тела воспользуемся самой общей формулой, связывающей силу и потенциальную энергию тела в поле этой силы:

где U - потенциальная энергия, набираемая (или теряемая) телом, движущимся в силовом поле F от точки 0 (точки, в которой потенциальная энергия принимается равной 0) до точки х.

потенциальная энергия:

45.Линейный гармонический Осциллятор, Математический и физический маятники:

Гармоническим осциллятором называется система, совершающая колебания, описываемые уравнием ( две точки сверху означают двукратное дифференцирование по времени )Колебания гармонического осциллятора являют ся важным примером

периодического движения и служат точной или приближенной моделью во

многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур (для токов и

напряжений столь малых, что элементы контура можно было бы считать линейными.

Пружинный маятник — это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k — жесткость пружины. Уравнение движения маятника имеет вид    или    Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω0t+φ) с циклической частотой   (2)  и периодом   (3)  Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна   

Физический маятник — это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1). 

Рис.1

Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы   (4)  где J — момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, Fτ ≈ –mgsinα ≈ –mgα — возвращающая сила (знак минус указывает на то, что направления Fτ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как    или    Принимая   (5)  получим уравнение    идентичное с (1), решение которого (1) найдем и запишем как:   (6)  Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω0 и периодом   (7)  где введена величина L=J/(ml) — приведенная длина физического маятника.  Точка О' на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называетсяцентром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем    т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' имеют свойство взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.  3. Математический маятник — это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника   (8)  где l —длина маятника.  Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке — центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника   (9)  Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника — это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника. 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]