Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по физике(на распечатку).docx
Скачиваний:
14
Добавлен:
23.09.2019
Размер:
421.7 Кб
Скачать

22. Уравнение шредингера

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредин­гера имеет вид (217.1)

где ћ=h/(2), т—масса частицы, —оператор Лапласа i — мнимая единица, U (х, у, z, t) — потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z, t) — искомая волновая функция частицы.

Уравнение справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной

2) производные должны быть непрерывны;

3) функция ||2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей

23. Смысл пси-функции

При создании квантовой механики возникли новые принципиальные проблемы, в частности проблема физической природы волн де Бройля. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсив­ности волн де Бройля. С другой стороны, интенсивность волн де Бройля оказывается больше там, где имеется большее число частиц, т. е. интенсивность волн де Бройля в данной точке пространства определяет число частил, попавших в эту точку. Таким образом, дифракционная картина для микрочастиц является проявлением статистичес­кой (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая.

Чтобы устранить эти трудности, немецкий физик М. Борн (1882—1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая (х, у, z, t). Эту величину называют также волновой функцией (или -функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля: (216.1)

(||2=*, * — функция, комплексно сопряженная с ). Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический, вероят­ностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент време­ни t в области с координатами х и x+dx, у и y+dy, z и z+dz.

24. Квантование энергии

Некоторые физические величины, относящиеся к микрообъектам, изменяются не непрерывно, а скачкообразно. О величинах, которые могут принимать только вполне определенные, то есть дискретные значения (латинское "дискретус" означает разделенный, прерывистый), говорят, что они квантуются.

В 1900 г. немецкий физик М. Планк, изучавший тепловое излучение твердых тел, пришел к выводу, что электромагнитное излучение испускается в виде отдельных порций - квантов - энергии. Значение одного кванта энергии равно

ΔE = hν,

где ΔE - энергия кванта, Дж; ν - частота, с-1h - постоянная Планка (одна из фундаментальных постоянных природы), равная 6,626·10−34 Дж·с.  Кванты энергии впоследствии назвали фотонами.

Идея о квантовании энергии позволила объяснить происхождение линейчатых атомных спектров, состоящих из набора линий, объединенных в серии.   Еще в 1885 г. швейцарский физик и математик И.Я. Бальмер установил, что длины волн, соответствующие определенным линиям в спектре атомов водорода, можно выразить как ряд целых чисел. Предложенное им уравнение, позднее модифицированное шведским физиком Ю.Р. Ридбергом, имеет вид:

1 / λ = R(1 / n12 − 1 / n22),

где λ - длина волны, см; R - постоянная Ридберга для атома водорода, равная 1,097373·105 см−1n1 и n2 - целые числа, причем n1 < n2.