Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по физике(на распечатку).docx
Скачиваний:
14
Добавлен:
23.09.2019
Размер:
421.7 Кб
Скачать

30. Спектры щелочных металлов

Спектры испускания атомов щелочных металлов, подобно спектру водорода, состоят из нескольких серий линий. Наиболее интенсивные из них получили названия: главная, резкая, диффузная и основная (или серия Бергмана). Эти названия имеют следующее происхождение. Главная серия названа так потому, что наблюдается и при поглощении. Следовательно, она соответствует переходам атома в основное состояние. Резкая и диффузная серии состоят соответственно из резких и размытых (диффузных) линий. Серия Бергмана была названа основной (фундаментальной) за свое сходство с сериями водорода.

Еще 'в конце прошлого столетия Ридберг установил эмпирические формулы, позволяющие вычислить частоты серий щелочных металлов. Эти формулы для всех серий сходны и имеют вид:

где —частота, соответствующая границе серии, — постоянная Ридберга (59,5), —целое число, —дробное число.

Таким образом, частоты линий могут быть представлены как разности двух термов: постоянного ( ) и переменного, имеющего более сложный вид, чем баль-меровский терм . Константы и а для различных серий имеют, вообще говоря, разное значение. Так, например, спектральные серии натрия можно представить следующими формулами.

Резкая серия(буква является начальной буквой наименования серии: sharp — резкий).

Главная серия:(principal — главный),

Диффузная серия:(diffuse — диффузный).

Основная серия (серия Бергмана)(fundamental — основной).:

31. Мультиплетность спектра и спин электрона

О. Штерн и В. Герлах, проводя прямые измерения магнитных моментов, обнаружили в 1922 г., что узкий пучок атомов водорода, заведомо находящихся в s-состоянии, в неоднородном магнитном поле расщепляется на два пучка. В этом состоянии момент импульса электрона равен нулю. Магнитный момент атома, связанный с орбитальным движением электрона, пропорционален механичес­кому моменту, поэтому он равен нулю и магнитное поле не должно оказывать влияния на движение атомов водорода в основном состоянии, т. е. расщеп­ления быть не должно. Однако в дальнейшем при применении спектральных приборов с большой разрешающей способностью было доказано, что спектральные линии атома водорода обнаруживают тонкую структуру (являются дублетами) даже в отсутствие магнитного поля.

Для объяснения тонкой структуры спектральных линий, а также ряда других трудностей в атомной физике американские физики Д. Уленбек (1900—1974) и С. Гаудсмит (1902—1979) предположили, что электрон обладает собственным неуничтожимым механическим моментом импульса, не связанным с движением электрона в пространстве, спином.

Спин электрона (и всех других микрочастиц) — квантовая величина, у нее нет классического аналога; это внутреннее неотъемлемое свойство электрона, подобное его заряду и массе.

Если электрону приписывается собственный механический момент импульса (спин) Ls, то ему соответствует собственный магнитный момент рms. Согласно общим выво­дам квантовой механики, спин квантуется по закону

где s спиновое квантовое число.

По аналогии с орбитальным моментом импульса, проекция Lsz спина квантуется так, что вектор Ls может принимать 2s+1 ориентации. Так как в опытах Штерна и Герлаха наблюдались только две ориентации, то 2s+1=2, откуда s= ½ . Проекция спина на направление внешнего магнитного поля, являясь квантованной величиной, определяется выражением, аналогичным (223.6):

где тs магнитное спиновое квантовое число; оно может иметь только два значения: ms = ± ½ .

Таким образом, опытные данные привели к необходимости характеризовать элект­роны (и микрочастицы вообще) добавочной внутренней степенью свободы. Поэтому для полного описания состояния электрона в атоме необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще магнитное спиновое квантовое число.

32. Результирующий механический момент многоэлектронного атома

Каждый электрон в атоме обладает орбитальным мо­ментом импульса Ml и собственным моментом Ms. Ме­ханические моменты связаны с соответствующими маг­нитными моментами, вследствие чего между всеми Ml и Ms имеется взаимодействие.

Моменты Ml и Ms складываются в результирующий момент атома Ml. При этом возможны два случая.

1.Моменты Ml взаимодействуют между собой силь­нее, чем с Ms, которые в свою очередь сильнее связаны друг с другом, чем с Мг. Вследствие этого все М( скла­дываются в результирующую ML, a Ms складываются в MS, а затем уже ML и MS дают результирующую MJ. Такой вид связи встречается чаще всего и называется связью Рессель — Саундерса.

2.Каждая пара Мl и Ms взаимодействует между собой сильнее, чем с другими Mi и Ms, вследствие чего образуются результирующие Ml для каждого электрона в отдельности, которые затем уже объединяются в Ml атома. Такой вид связи, называемый (j,j)-связью, на­блюдается у тяжелых атомов.