
- •Вопрос 1.Радиус-вектор.Вектор перемещения.
- •Вопрос 2.Скорость перемещения. Средняя и мгновенная скорости.
- •Вопрос 4.Ускорение.Модуль ускорения.
- •Вопрос 5.Неравномерное движение точки по криволинейной траектории.
- •Тема 5. Законы ньютона.
- •Вопрос 1. Инерциальные системы отсчета. Первый закон Ньютона.
- •Вопрос 2. Второй закон Ньютона.
- •Вопрос 3. Третий закон Ньютона.
- •Вопрос 4. Полный импульс системы.
- •Вопрос 5. Центр масс(центр инерции). Уравнение движения центра масс.
- •Тема 6. Закон сохранения импульса.
- •Вопрос 1. Замкнутая и незамкнутая системы в механике. Закон сохранения импульса.
- •Тема 7. Работа. Мощность. Энергия.
- •Вопрос 1. Определение элементарной работы, различные выражения.
- •Вопрос 2. Мощность, ее выражение через силу и скорость тела.
- •Вопрос 3. Кинетическая энергия и ее выражение через импульс тела.
- •Вопрос 4. Консервативные силы, их работа. Потенциальная энергия.
- •Вопрос 3. Получить выражение для момента инерции.
- •Вопрос 4. Основной закон динамики для вращения тела вокруг неподвижной оси.
- •Вопрос 5. Плоские движения твердого тела.
- •Вопрос 7. Кинетическая энергия при вращательном движении.
- •Тема 9. Закон сохранения момента импульса.
- •Вопрос 1. Получить закон сохранения момента импульса.
- •Тема 10. Силовые поля
- •Вопрос 1. Понятие поля. Поля консервативных сил.
- •Вопрос 2.Потенциальные кривые
- •Вопрос 4.Получить выражение потенциальной энергии
- •Тема 11.Принцип относительности в механике
- •Вопрос 1.Принцип относительности Галилея.
- •Вопрос 2. Постулаты специальной теории относительности(сто).
- •Вопрос 3. Сокращение длины.
- •Вопрос 4. Замедление времени.
- •Вопрос 5. Интервал между событиями.
- •Вопрос 6. Релятивистский закон сложения скоростей.
- •Вопрос 7. Кинетич. Энергия релятивистской частицы. Энергия покоя. Полная энергия.
- •Вопрос 8.Релятивистский Импульс.
- •Вопрос 9.Взаимосвязь массы и энергии в теории относительности.
- •Тема 12. Молекулярная физика.
- •Вопрос 1.Молекулярные системы.
- •Вопрос 2.Идеальный газ
- •Вопрос 3.Основные уравнения мкт
- •Вопрос 4.Средняя кинетическая энергия
- •Вопрос 5.Степени свободы молекул.
- •Тема 13.Классическая статика.
- •Вопрос 1.Распределение молекул по скоростям(Закон Максвелла).
- •Вопрос 2. Средняя арифметическая и средняя квадратичная скорости
- •Вопрос 3.Барометрическая формула. Закон Больцмана.
- •Тема 14. Явления переноса в газах
- •Вопрос 1.Столкновение молекул.
- •Вопрос 2.Диффузия.
- •Вопрос 3.Вязкость (внутреннее трение)
- •Вопрос 4.Теплопроводность
- •Тема 15. Основные понятия термодинамики
- •Вопрос 1. Основные понятия. Обратимые и необратимые процессы.
- •Вопрос 2. Первое начало термодинамики.
- •Вопрос 3.Изохорический процесс. Его можно осуществить, нагревая газ при закрепленном поршне. Подставим выражения для dQ и dU.
- •Вопрос 7.Работа.
- •Вопрос 8.Теплоемкость газов.
- •Тема 16.
- •Вопрос 1. Энтропия
- •Вопрос 2,3,4. Изобарический, изохорический, изотермический
- •Вопрос 6.Теперь мы можем сформулировать II начало термодинамики.
- •Вопрос 7. Круговые процессы (циклы)
- •Тема 18.Вопрос 1.Агрегатные состояния вещества
- •Тема 17.Вопрос 1. Реальные газы
- •Вопрос 2.Состояние реальных газов. Уравнение Ван-дер-Ваальса
- •Вопрос 3. Изотермы реального газа
- •Вопрос 4.Внутреняя энергия реального газа.Эффект джоуля-томсона.
- •Тема 18. Вопрос 2. Жидкости
- •Вопрос 3.
Вопрос 2,3,4. Изобарический, изохорический, изотермический
p=const изобарический |
|
V=const изохорический |
|
T=const изотермический |
|
адиабатический |
dQ=0 dS=0 S=const |
2)Энтропия мера рассеяния энергии.
|
запишем I начало термодинамики для обратимого изотермического процесса, учитывая, что Q=TdS и выразим работуА |
термодинамическая
функция
величина
|
|
Из формул можно сделать вывод, что в работу можно перевести не весь запас внутренней энергии системы U. Часть энергии TS нельзя перевести в работу, она рассеивается в окружающей среде. И эта «связанная» энергия тем больше, чем больше энтропия системы. Следовательно, энтропию можно назвать мерой рассеяния энергии. |
3)Энтропия – мера беспорядка системы
Введем понятие термодинамической вероятности. Пусть мы имеет ящик, разделенный на n отсеков. В ящике по всем отсекам свободно перемещается N молекул. В первом отсеке окажется N1 молекул, во втором отсеке N2 молекул,…,
в n-ом отсеке Nn молекул. Число способов w, которыми можно распределить N молекул по n состояниям (отсекам) называется термодинамической вероятностью. Иначе говоря, термодинамическая вероятность показывает, сколькими микрораспределениями можно получить данное макрораспределение Она вычисляется по формуле: 1
|
В данном примере N = 3 (три молекулы) и n = 3(три отсека), молекулы считаются различимыми.
В первом случае макрораспределение – это равномерное распределение молекул по отсекам, оно может осуществиться 6-ью микрораспределениями. Вероятность такого распределение самая большая. Равномерное распределение можно назвать «беспорядком» (по аналогии с разбросанными вещами в комнате) В последнем случае, когда молекулы собираются только в одном отсеке вероятность наименьшая. Проще говоря, из повседневных наблюдений мы знаем, что молекулы воздуха более или менее равномерно распределяются в помещении, и практически совершенно невероятно, чтобы все молекулы собрались в одном углу комнаты. Однако теоретически такая вероятность существует.
Больцман постулировал, что энтропия прямо пропорциональна натуральному логарифму термодинамической вероятности:
|
Следовательно, энтропию можно назвать мерой беспорядка системы.
Вопрос 6.Теперь мы можем сформулировать II начало термодинамики.
1)При любых
процессах, происходящих в теплоизолированной
системе, энтропия системы не может
убывать:
|
Знак «=» относится к обратимым процессам, знак «>» к необратимым (реальным) процессам. В незамкнутых системах энтропия может меняться любым образом. |
Иначе говоря, в замкнутых реальных системах возможны только те процессы, при которых энтропия возрастает. Энтропия связана с термодинамической вероятностью, следовательно, ее увеличение в замкнутых системах означает рост «беспорядка» системы, т.е. молекулы стремятся прийти в одинаковое энергетическое состояние и с течением времени все молекулы должны иметь одинаковую энергию. Отсюда был сделан вывод о стремлении нашей Вселенной к тепловой смерти. «Энтропия мира стремится к максимуму» (Клаузиус). Так как законы термодинамики выведены на основе человеческого опыта в масштабах Земли, то вопрос об их применимости в масштабах Вселенной остается открытым |
2) «Теплота не может сама собой переходить от менее нагретого к более нагретому телу» (Клаузиус). |
Для этого
требуется работа внешних сил.
Теоретически переход теплоты от
холодного тела к горячему возможен.
Но отношение вероятностей перехода,
например, 1 эрг = 107
Дж теплоты
от тела с температурой 300 К к телу с
температурой 301 К и наоборот составляет
примерно 1:
|
|
3) «Невозможно построить вечный двигатель второго рода, т.е. такую периодически действующую машину, действие которой состояло бы только в поднятии груза и охлаждении теплового резервуара» (Томсон, Планк) |
Обязательно должно быть еще тело, которому «придется» отдать часть теплоты. Просто отнимать тепло от некоторого тела и превращать его в работу невозможно потому, что такой процесс сопровождается уменьшением энтропии нагревателя. Следовательно, нужно еще одно тело – холодильник, энтропия которого будет увеличиваться, чтобы S = 0. Т.е. у нагревателя забирается теплота, за счет этого может быть совершена работа, но часть теплоты «теряется», т.е. передается холодильнику. |