
- •2.3. Методы анализа линейных усилительных каскадов
- •7. Вольт-амперные характеристики полевых транзисторов
- •8. Схемы замещения.
- •9. Составной транзистор – это комбинация двух (или нескольких) транзисторов, которую можно рассматривать как единое целое.
- •14. Операционный усилитель (оу) как аэ аналоговой схемотехники. Модели оу. Представление ачх и фчх и двух- и трехкаскадной моделей оу
- •15. Обеспечение устойчивости оу с цепью оос.
- •16. Реальные параметры и идеализированные свойства оу. Эквивалентная схема оу по постоянному току. Основные операционные схемы (ос): инвертирующая, неинвертирующая и дифференциальная.
- •18. Особенности проектирования и расчета пн и птн
- •19. Статические и динамические нагрузочные характеристики аэ и их использование в аналоговой схемотехнике. Режимы а, в, с, d. Основные энергетические показатели и диаграммы мощности режимов.
- •21.Стабилизация рт с помощью оос. Параметрическая стабилизация. Цепи питания бт. Использование гст для задания режимов работы аэ
- •23. Каскады с повышенным входным сопротивлением на бт и пт. Применение составных транзисторов. Пересчет параметров транзисторов при различных включениях
- •24. Особенности работы каскадов в режиме большого сигнала. Требования, предъявляемые к выходным каскадам. Виды каскадов. Однотактные выходные каскады.
- •25. Построение нагрузочных характеристик. Двухтактные выходные каскады. Классификация, особенности работы и свойства.
- •26. Особенности оценки энергетических показателей двухтактного каскада в режиме в. Методы стабилизации режима по постоянному току при работе с отсечкой тока. Выходные каскады с повышенным кпд
- •27.Бестрансформаторный усилитель мощности.
- •28.Определение параметров транзистора по его входным и выходным вольтамперным характеристикам.
- •29.Широкополосные усилители (шу) с коррекцией ачх и пх. Методы коррекции характеристик (нч и вч).
- •30.Усилители постоянного тока (упт). Принципы построения, обеспечение минимального дрейфа параметров. Упт с преобразованием.
- •31.Усилительные каскады с динамической нагрузкой. Каскадный усилитель. Многокаскадные усилители с оос. Методы увеличения глубины оос. Паразитные обратные связи и методы борьбы с ними.
- •32. Построение нагрузочных прямых по постоянному и переменному току.
- •33. Расчет параметров усилителей с обратными связями
- •34. Основные определения (терминология) в интегральной схемотехнике. Интегральные микросхемы, элементы, компоненты. Элементы конструкции.
- •35. Простые и сложные ис. Степень интеграции ис. Классификация ис
- •36. Система условных обозначений в ис. Методы изготовления (виды технологий) ис
- •37. Оу как активный элемент мэу. Типы оу и их отличительные особенности. Меры предосторожности и полезные советы при использовании оу
- •38.Корректирующие усилители на оу
- •39. Гст на основе оу. Гст с изолированной нагрузкой. Оценка параметров и точности формирования тока с реальным оу. Гст с заземленной нагрузкой.
- •42.Стабилизаторы напряжения сн на основе оу. Сн как элемент схемотехники. Однополярные сн с опорными стабилитронами.
- •43. Сн с повышенной нагрузочной способностью и ограничениям по току. Следящий сн разнополярных напряжений.
- •44. Экстрематоры сигналов на основе оу (однополярные и двухполярные). Оценка точности формирования экстремума.
- •45. Линейные преобразователи переменного напряжения в постоянное. Сущность линеаризации амплитудной характеристики. Критерий малости преобразуемого напряжения. Пн амплитудных значений.
- •46. Электронно-управляемые масштабные пн на основе оу. Пн с линейным и экспоненциальным управлением и электронным переключением полярности коэффициента передачи.
- •47. Мостовой усилитель как преобразователь приращений проводимостей (сопротивлений) в напряжение. Циркулятор сигналов. Линейные преобразователи полных проводимостей (сопротивлений) в напряжение.
- •48. Устройства регулирования сигналов и регулируемые усилители
- •49. Основные свойства и параметры перемножителей сигналов (пс). Реализация математических операций (умножения, деления, возведения в квадрат, извлечения квадратного корня) на основе пс.
- •1.2.7 Синхронный (линейный) амплитудный демодулятор
- •51. Методы реализации пс на основе операций логарифмирования и антилогарифмирования сигналов, на основе изменения проводимости канала пт, на основе использования время амплитудного преобразования
- •1.2.11Времяамплитудный перемножитель сигналов
- •52. Расчет упт и функциональных преобразователей на основе оу.
- •53. Системы сбора и распределения данных. Интегральные компараторы сигналов. Аналоговые коммутаторы ак. Многоканальные коммутаторы: мультиплексоры, демультиплексоры
- •58. Задачи, основные этапы и особенности схемотехнического проектирования. Основные принципы интегральной схемотехники. Теоретические основы интегральной схемотехники. Анализ структур активных
- •59. Транзисторные структуры тс. Диодно-транзисторные структуры дтс как отражатели тока. Токовое зеркало Уилсона. Биполярно-униполярные структуры. Отражатели тока на пт.
- •60. Проблемы непосредственной связи в полупроводниковых ис. Согласование импедансов и уровней постоянного тока. Стабилизация уровней напряжения и тока.
- •61. Источники опорного напряжения ион на бт и пт. Ион с умножением напряжения база-эмиттер бт. Повышение коэффициента фильтрации питающего напряжения. Ион с термокомпенсацией.
- •63. Основные типы каскадов и ососбенности их реализации в полупроводниковых ис: однотактные, двухтактные, дифференциальные. Ду на бт и пт как активные элементы интегральной схемотехники.
- •64. Разновидности схемотехники интегральных ду. Ду на моп-транзисторах с активной нагрузкой.
- •70. Схемотехническое проектирование реальной модели оу. Схемотехника модели. Формирование малосигнальных параметров. Определение параметров статических ошибок оу
- •75. Формирование синусоидальных сигналов с повышенной стабильностью амплитуды и линейностью характеристик управления по частоте.
- •76. Теоретические основы управляемых высокочастотных и низкочастотных автогенераторов. Схемотехническая реализация микроэлектронных автогенераторов на высоких и низких частотах.
- •77. Широкополосный амплитудный демодулятор. Преобразователь частоты импульсов в напряжение. Формирователи импульсных сигналов из синусоидальных.
- •78. Прецизионный амплитудный демодулятор. Линейный частотный модулятор и цифровой частотно-фазовый демодулятор в его составе.
- •79. Сущность проблемы индуктивности в микроэлектронике. Реализация индуктивности с помощью аэ. Реализация активных фильтров (аф).
- •80. Методы синтеза аф и их сравнительная оценка. Аппроксимация нормированной ачх фнч. Преобразование ачх фнч в ачх фвч и в ачх полосовых фильтров пф.
- •81. Усилители с ограниченным коэффициентом передачи в аф. Типовые структуры аф на оу. Режекторно-полосовые фильтры и их свойства, ограничительные свойства аф.
79. Сущность проблемы индуктивности в микроэлектронике. Реализация индуктивности с помощью аэ. Реализация активных фильтров (аф).
Реализация активных фильтров
Электрическим фильтром называется устройство для передачи электрических сигналов, пропускающее токи в определенной области частот и препятствующее их прохождению вне этой области. В радиотехнике и электронике электрические фильтры подразделяют на пассивные и активные. Схемы пассивных фильтров содержат только пассивные элементы: резисторы, конденсаторы и катушки индуктивности.
В схемы активных фильтров помимо указанных элементов входят такие активные изделия, как транзисторы или интегральные микросхемы. Фильтрующие свойства устройства определяются его амплитудно-частотной характеристикой, которой называется зависимость коэффициента усиления этого устройства от частоты сигнала. В некоторой области частот, которая называется полосой пропускания или полосой прозрачности, электрические колебания передаются фильтром с входа на выход практически без ослабления. Вне полосы прозрачности расположена полоса затухания или задерживания, в пределах которой частотные составляющие сигнала ослабляются. Между полосой прозрачности и полосой задерживания находится частота, называемая граничной. В связи с тем что существует плавный переход между полосой прозрачности и полосой затухания, граничной обычно считается частота, на которой ослабление сигнала оказывается равным -3 дБ - то есть по напряжению в √2 раз меньше, чем в полосе прозрачности.
С ростом порядка фильтра его фильтрующие свойства улучшаются. На одном ОУ достаточно просто реализуется фильтр второго порядка. Для реализации фильтров нижних частот, высших частот и полосовых фильтров широкое применение нашла схема фильтра второго порядка Саллена-Ки. На рис. 17 приведен ее вариант для ФНЧ. Отрицательная обратная связь, сформированная с помощью делителя напряжения R3, ( – 1)R3, обеспечивает коэффициент усиления, равный . Положительная обратная связь обусловлена наличием конденсатора С2. Передаточная функция фильтра имеет вид:
Разработано несколько конфигураций активных фильтров. Три основных из них:
С неограниченным коэффициентом усиления и много кратной обратной связью
С управляемым напряжением источником напряжения
С переменным состоянием
Схемы этих 3 фильтров представлены на рисунке. Следует заметить, что фильтр с переменным состоянием имеет 3 выхода: низкочастотный, высокочастотный и полосно-пропускающий.
80. Методы синтеза аф и их сравнительная оценка. Аппроксимация нормированной ачх фнч. Преобразование ачх фнч в ачх фвч и в ачх полосовых фильтров пф.
Первым этапом синтеза всякого фильтра является задание передаточной функции (в операторной или комплексной форме), которая отвечает условиям практической реализуемости и одновременно обеспечивает получение необходимой АЧХ или ФЧХ (но не обеих) фильтра. Этот этап называют аппроксимацией характеристик фильтра.
Операторная функция представляет собой отношение полиномов:
K(p)=A(p)/B(p),
и однозначно определяется нулями и полюсами. Простейший полином числителя - константа. Число полюсов функции (а в активных фильтрах на ОУ число полюсов обычно равно числу конденсаторов в цепях, формирующих АЧХ) определяет порядок фильтра. Порядок фильтра указывает на скорость спада его АЧХ, которая для первого порядка составляет 20дБ/дек, для второго - 40дБ/дек, для третьего - 60дБ/дек и д.д.
Задачу аппроксимации решают для ФНЧ, затем с помощью метода инверсии частоты полученную зависимость используют для других типов фильтров. В большинстве случаев задают АЧХ, принимая нормированный коэффициент передачи:
,
где
(х)
- функция фильтрации;
- нормированная частота;
- частота среза фильтра;
- допустимое отклонение в полосе
пропускания.
В зависимости от того, какая функция принимается в качестве (х) различают фильтры (начиная со второго порядка) Баттерворта, Чебышева, Бесселя и др. На рисунке 7.15 приведены их сравнительные характеристики.
Фильтр Баттерворта (функция Батерворта) описывает АЧХ с максимально плоской частью в полосе пропускания и относительно небольшой скоростью спада. АЧХ такого ФНЧ может быть представлена в следующем виде:
,
где n - порядок фильтра.
Фильтр Чебышева (функция Чебышева) описывает АЧХ с определенной неравномерностью в полосе пропускания, но не большей скоростью спада.
Фильтр Бесселя характеризуется линейной ФЧХ, в результате чего сигналы, частоты которых лежат в полосе пропускания, проходят через фильтр без искажений. В частности, фильтры Бесселя не дают выбросов при обработке колебаний прямоугольной формы.
Помимо перечисленных аппроксимаций АЧХ активных фильтров известны и другие, например, обратного фильтра Чебышева, фильтра Золотарева и т.д. Заметим, что схемы активных фильтров не изменяются в зависимости от типа аппроксимации АЧХ, а изменяются соотношения между номиналами их элементов.
Переход от ФНЧ к ФВЧ, как видно из рисунков, осуществляется заменой резисторов на конденсаторы, и наоборот.
Либо возможно построение активного универсального фильтра (ФНЧ, ФВЧ и ПФ), вариант схемы которого приведен на рисунке 7.19.
В
его состав входят сумматор на ОУ
и два ФНЧ первого порядка на ОУ
и
,
которые включены последовательно. Если
,
то частота сопряжения
.
ЛАЧХ имеет наклон асимптот порядка
40дБ/дек. Универсальный активный фильтр
имеет хорошую стабильность параметров
и высокую добротность (до 100). В серийных
ИМС довольно часто используется подобный
принцип построения фильтров.