
- •2.3. Методы анализа линейных усилительных каскадов
- •7. Вольт-амперные характеристики полевых транзисторов
- •8. Схемы замещения.
- •9. Составной транзистор – это комбинация двух (или нескольких) транзисторов, которую можно рассматривать как единое целое.
- •14. Операционный усилитель (оу) как аэ аналоговой схемотехники. Модели оу. Представление ачх и фчх и двух- и трехкаскадной моделей оу
- •15. Обеспечение устойчивости оу с цепью оос.
- •16. Реальные параметры и идеализированные свойства оу. Эквивалентная схема оу по постоянному току. Основные операционные схемы (ос): инвертирующая, неинвертирующая и дифференциальная.
- •18. Особенности проектирования и расчета пн и птн
- •19. Статические и динамические нагрузочные характеристики аэ и их использование в аналоговой схемотехнике. Режимы а, в, с, d. Основные энергетические показатели и диаграммы мощности режимов.
- •21.Стабилизация рт с помощью оос. Параметрическая стабилизация. Цепи питания бт. Использование гст для задания режимов работы аэ
- •23. Каскады с повышенным входным сопротивлением на бт и пт. Применение составных транзисторов. Пересчет параметров транзисторов при различных включениях
- •24. Особенности работы каскадов в режиме большого сигнала. Требования, предъявляемые к выходным каскадам. Виды каскадов. Однотактные выходные каскады.
- •25. Построение нагрузочных характеристик. Двухтактные выходные каскады. Классификация, особенности работы и свойства.
- •26. Особенности оценки энергетических показателей двухтактного каскада в режиме в. Методы стабилизации режима по постоянному току при работе с отсечкой тока. Выходные каскады с повышенным кпд
- •27.Бестрансформаторный усилитель мощности.
- •28.Определение параметров транзистора по его входным и выходным вольтамперным характеристикам.
- •29.Широкополосные усилители (шу) с коррекцией ачх и пх. Методы коррекции характеристик (нч и вч).
- •30.Усилители постоянного тока (упт). Принципы построения, обеспечение минимального дрейфа параметров. Упт с преобразованием.
- •31.Усилительные каскады с динамической нагрузкой. Каскадный усилитель. Многокаскадные усилители с оос. Методы увеличения глубины оос. Паразитные обратные связи и методы борьбы с ними.
- •32. Построение нагрузочных прямых по постоянному и переменному току.
- •33. Расчет параметров усилителей с обратными связями
- •34. Основные определения (терминология) в интегральной схемотехнике. Интегральные микросхемы, элементы, компоненты. Элементы конструкции.
- •35. Простые и сложные ис. Степень интеграции ис. Классификация ис
- •36. Система условных обозначений в ис. Методы изготовления (виды технологий) ис
- •37. Оу как активный элемент мэу. Типы оу и их отличительные особенности. Меры предосторожности и полезные советы при использовании оу
- •38.Корректирующие усилители на оу
- •39. Гст на основе оу. Гст с изолированной нагрузкой. Оценка параметров и точности формирования тока с реальным оу. Гст с заземленной нагрузкой.
- •42.Стабилизаторы напряжения сн на основе оу. Сн как элемент схемотехники. Однополярные сн с опорными стабилитронами.
- •43. Сн с повышенной нагрузочной способностью и ограничениям по току. Следящий сн разнополярных напряжений.
- •44. Экстрематоры сигналов на основе оу (однополярные и двухполярные). Оценка точности формирования экстремума.
- •45. Линейные преобразователи переменного напряжения в постоянное. Сущность линеаризации амплитудной характеристики. Критерий малости преобразуемого напряжения. Пн амплитудных значений.
- •46. Электронно-управляемые масштабные пн на основе оу. Пн с линейным и экспоненциальным управлением и электронным переключением полярности коэффициента передачи.
- •47. Мостовой усилитель как преобразователь приращений проводимостей (сопротивлений) в напряжение. Циркулятор сигналов. Линейные преобразователи полных проводимостей (сопротивлений) в напряжение.
- •48. Устройства регулирования сигналов и регулируемые усилители
- •49. Основные свойства и параметры перемножителей сигналов (пс). Реализация математических операций (умножения, деления, возведения в квадрат, извлечения квадратного корня) на основе пс.
- •1.2.7 Синхронный (линейный) амплитудный демодулятор
- •51. Методы реализации пс на основе операций логарифмирования и антилогарифмирования сигналов, на основе изменения проводимости канала пт, на основе использования время амплитудного преобразования
- •1.2.11Времяамплитудный перемножитель сигналов
- •52. Расчет упт и функциональных преобразователей на основе оу.
- •53. Системы сбора и распределения данных. Интегральные компараторы сигналов. Аналоговые коммутаторы ак. Многоканальные коммутаторы: мультиплексоры, демультиплексоры
- •58. Задачи, основные этапы и особенности схемотехнического проектирования. Основные принципы интегральной схемотехники. Теоретические основы интегральной схемотехники. Анализ структур активных
- •59. Транзисторные структуры тс. Диодно-транзисторные структуры дтс как отражатели тока. Токовое зеркало Уилсона. Биполярно-униполярные структуры. Отражатели тока на пт.
- •60. Проблемы непосредственной связи в полупроводниковых ис. Согласование импедансов и уровней постоянного тока. Стабилизация уровней напряжения и тока.
- •61. Источники опорного напряжения ион на бт и пт. Ион с умножением напряжения база-эмиттер бт. Повышение коэффициента фильтрации питающего напряжения. Ион с термокомпенсацией.
- •63. Основные типы каскадов и ососбенности их реализации в полупроводниковых ис: однотактные, двухтактные, дифференциальные. Ду на бт и пт как активные элементы интегральной схемотехники.
- •64. Разновидности схемотехники интегральных ду. Ду на моп-транзисторах с активной нагрузкой.
- •70. Схемотехническое проектирование реальной модели оу. Схемотехника модели. Формирование малосигнальных параметров. Определение параметров статических ошибок оу
- •75. Формирование синусоидальных сигналов с повышенной стабильностью амплитуды и линейностью характеристик управления по частоте.
- •76. Теоретические основы управляемых высокочастотных и низкочастотных автогенераторов. Схемотехническая реализация микроэлектронных автогенераторов на высоких и низких частотах.
- •77. Широкополосный амплитудный демодулятор. Преобразователь частоты импульсов в напряжение. Формирователи импульсных сигналов из синусоидальных.
- •78. Прецизионный амплитудный демодулятор. Линейный частотный модулятор и цифровой частотно-фазовый демодулятор в его составе.
- •79. Сущность проблемы индуктивности в микроэлектронике. Реализация индуктивности с помощью аэ. Реализация активных фильтров (аф).
- •80. Методы синтеза аф и их сравнительная оценка. Аппроксимация нормированной ачх фнч. Преобразование ачх фнч в ачх фвч и в ачх полосовых фильтров пф.
- •81. Усилители с ограниченным коэффициентом передачи в аф. Типовые структуры аф на оу. Режекторно-полосовые фильтры и их свойства, ограничительные свойства аф.
58. Задачи, основные этапы и особенности схемотехнического проектирования. Основные принципы интегральной схемотехники. Теоретические основы интегральной схемотехники. Анализ структур активных
Элементов
Этапы проектирования на схемотехническом уровне.
Синтез - генерация оптимального первоначального схемы, учитывая ее структуру (структурный синтез) и значения внутренних параметров (параметрический синтез).
Расчет - определение выходных параметров и характеристик устройства при неизменных значениях его внутренних параметров и постоянной структуре.
Анализ - определение изменяемых выходных параметров и характеристик устройства в зависимости от изменения его внутренних и входных параметров. В случае применения ЭВМ задачи расчета часто называется одновариантного, а задача анализа - многовариантным анализом .
Анализ - ядро программ схемотехнического проектирования; для расчета зависимостей фазовых переменных от различных аргументов.
На этапе установки (перед началом анализа) выполняются следующие процедуры:
- перерасчет параметров элементов в зависимости от заданных условий окружающей среды (температуры);
- расчет неизменных при многократных вычислениях частей нелинейных функций;
- упорядочения, перенумерация и частичное расписание матрицы схемы.
Оптимизация - определение лучших с точки зрения ТЗ значений выходных параметров или характеристик путем целенаправленного изменения внутренних параметров прибора (при параметрической оптимизации) или структуры прибора (при структурной оптимизации).
Рис. 2.1. Типовая схема схемотехнического этапа проектирования.
59. Транзисторные структуры тс. Диодно-транзисторные структуры дтс как отражатели тока. Токовое зеркало Уилсона. Биполярно-униполярные структуры. Отражатели тока на пт.
Отражатель тока — генератор тока, управляемый током. Чаще всего выходной ток равен управляющему или отличается от него в целое число раз. Токовые зеркала обычно используются для того, чтобы «скопировать» один управляющий ток на множество каскадов, и тем самым задать их ток покоя.
Биполярный транзистор может быть использован в качестве простейшего преобразователя тока, но его коэффициент передачи сильно зависит от колебаний температуры, стойкости к бета-излучению и т. д. Для устранения этих нежелательных помех токовое зеркало состоит из двух каскадно соединенных «ток — напряжение» и «напряжение — ток» преобразователей, размещёных при одинаковых условиях и имеющих обратные характеристики. Не обязательно, чтобы они были линейными, единственным требованием является их «зеркальность»
Токовое зеркало Уилсона. На рис. 2.48 представлено еще одно токовое зеркало, обеспечивающее высокую степень постоянства выходного тока. Транзисторы Т1 и Т2 включены как в обычном токовом зеркале. Благодаря транзистору Т3 потенциал коллектора транзистора Т1 фиксирован и на удвоенную величину падения напряжения на диоде ниже, чем напряжение питания Uкк. Такое включение позволяет подавить эффект Эрли в транзисторе Т1, коллектор которого теперь служит для задания режима работы схемы; выходной ток определяется транзистором Т2. Транзистор Т3 не влияет на баланс токов, если его базовый ток пренебрежимо мал; его единственная функция состоит в том, чтобы зафиксировать потенциал коллектора Т1. В результате в токозадающих транзисторах Т1 и Т2 падения напряжения на эмиттерных переходах фиксированы; транзистор Т3 можно рассматривать как элемент, который просто передает выходной ток в нагрузку, напряжение на которой является переменным.
Рис. 2.48. Токовое зеркало Уилсона. Влияние изменений напряжения на нагрузке на выходной ток подавлено за счет каскодного включения транзистора Т3, которое позволяет уменьшить изменения напряжения транзистора Т1.
Эффект Эрли: выходной ток несколько изменяется при изменении выходного напряжения, то есть выходное сопротивление схемы не бесконечно.
Применение полевых транзисторов в структуре токового зеркала позволяет достичь высокой линейности характеристики передачи тока