
- •Систематика живых организмов. Экологическая характеристика крупных таксонов.
- •Основные экологические функции бактерий, вирусов, грибов, растений и животных в биосфере.
- •Сходства и различия прокариот и эукариот в таблице представлены сходства и различия прокариот и эукариот
- •Основные группы микроорганизмов: протисты, микроводоросли, микроскопические грибы, бактерии, вирусы, прионы.
- •Влияние микроорганизмов на газовый состав атмосферы. Отношение микроорганизмов к кислороду.
- •Влияние концентрации субстрата и факторов среды на кинетику роста микроорганизмов.
- •Трофические взаимодействия в микробных сообществах.
- •Межмикробные взаимодействия. Стимуляция и ингибирование в микробных ассоциациях. Антибиоз и продукция физиологически активных веществ.
- •Взаимодействие микроорганизмов с растениями. Ризосферный эффект, микориза, фитопатогенные бактерии и грибы.
- •Бактерии – источники белка
- •20. Микроорганизмы и круговорот азота. Группы микроорганизмов: азотфиксаторы, аммонификаторы, нитрификаторы, денитрификаторы. Роль почвенных микроорганизмов в круговороте азота
- •23. Геологическая деятельность микроорганизмов
- •Экологические типы наземных растений по отношению к воде: гигрофиты, мезофиты, ксерофиты.
- •Морфолого-анатомические и физиологические особенности строения гидрофитов. Группы водных растений по образу жизни и строению: гидатофиты, аэрогидатофиты, гелофиты.
- •Разнообразие защитных приспособлений, направленных на уменьшение расхода воды. Афилльные формы, растения с вечнозелеными плотными кожистыми, жесткими или колючими листьями.
- •27. Приспособление растений к световому режиму. Анатомо-морфологические и физиологические адаптации.
- •29.Особенности температурного режима растений и экологические группы растений по отношению к температуре: термофилы, криофилы, мезофиллы.
- •30. Суточные и сезонные адаптации у растений к температуре.
- •32.Рост растения как аналог подвижности животных. Вегетативно-подвижные и вегетативно-неподвижные виды
- •33.Поливариантность онтогенеза растений, ее адаптивное значение.
- •34. Рост растений в зависимости от механического состава почв и наличия органического вещества.
- •35.Экологические группы растений по отношению к кислотности почв: ацидофилы, базифилы, нейтрофилы.
- •Пути адаптации растений к засолению
- •37. Фитоиндикация почв: общего плодородия, кислотности, засоленности, водного режима.
- •38.Влияния рельефа на жизнь растений.
- •39.Атмосферный воздух в жизни растений
- •40.Роль ветра в опылении, распространении плодов и семян, влияние на морфогенез побегов.
39.Атмосферный воздух в жизни растений
Воздух (атмосферный и почвенный) необходим растениям как источник кислорода для дыхания, азота и углекислого газа — для питания. Он необходим также для протекания в почве микробиологических процессов. Атмосферный воздух состоит (в % по объему): из азота — 78,08; кислорода — 20,95; углекислого газа — 0,039. Кроме того, в незначительных количествах в нем содержится аргон, неон, гелий, криптон, водород, ксенон, озон, радон. В воздухе есть также водяной пар (0—4 %) и вредные примеси — сернистый газ, хлор, сероводород и другие. Особенно много кислорода требуется для дыхания прорастающих семян. При отсутствии газообмена с атмосферой почвенный кислород может быть израсходован в течение двух суток. Максимальная потребность в нем растений приходится на период цветения. Даже при незначительной концентрации загрязнителей длительное влияние на растения загрязненного воздуха приводит к уменьшению интенсивности их фотосинтеза и к замедлению их роста, а также к упрощению и распаду ценозов.
Характерно, например, изреживание древостоев и уменьшение видового состава флоры в степных районах возникающие под влиянием дымогазовых выбросов металлургических и коксохимических предприятий. Химические загрязнители оказывают влияние на патогенную активность потребителей растений, их численность, видовое разнообразие и количественное соотношение друг с другом. Для нейтрализации загрязнителей или уменьшении их концентрации вблизи промышленных зон и в черте города выживают зеленые насаждения. Они обогащают воздух кислородом, фитонцидами, способствуют рассеиванию вредных веществ и поглощают их. Наиболее опасны для растительного мира патологические явления, нарушающие: Строение и функционирование пигментов, пластид, отдельных звеньев фотосинтеза и фотосинтетического аппарата в целом. Строение и функционирование аппарата газообмена и механизма его регуляции, торможение клеточного дыхания (Рудкова, 1981), уменьшение количества устьичных аппаратов (Сидорович, Гетко, 1979) и ослабление газообмена у растений на больших территориях (Назаров с соавт., 1977).
Строение и функционирование аппарата водного обмена и механизма его регуляции [увеличение количества прочно удерживаемой воды под влиянием магния (Шкляев, 1981), ослабление водного гомеостаза при заморозках и под влиянием загрязнителей в условиях засухи (Тарабарин, 1980), патологические изменения тургора и осмотических параметров и т.д.].Строение и функционирование механизмов минерального обмена [изменение нормального количественного соотношения между элементами, сдвиги в обмене одних элементов под влиянием других, в частности (Рудкова, 1981) кальция, марганца и фосфора при избытке алюминия и т.д.].
40.Роль ветра в опылении, распространении плодов и семян, влияние на морфогенез побегов.
Анемофилия у цветковых возникла на основе обоеполого энтомофильного цветка. Она представляет особое направление их приспособительной эволюции в условиях недостатка насекомых. Это не возврат к прошлому, а дальнейшее развитие процесса опыления цветковых растений. Стоит только вспомнить, что у анемофильных цветковых растений выработались рыльца с огромной воспринимающей поверхностью, улавливающей пыльцу из воздуха, которых вообще нет у голосеменных. Переход от энтомофилии к анемофилии вызвал глубокую структурную перестройку цветка и соцветия. Опыление. Репродуктивная часть тычинки – ее головка, т.н. пыльник. Обычно он состоит из четырех расположенных бок о бок пыльцевых мешков. Созревая, они вскрываются продольными трещинами или округлыми порами и высвобождают пыльцу – множество крошечных, летучих или липких пыльцевых зерен. Опыление ветром. Ветроопыляемые растения образуют огромные количества летучей пыльцы: большая ее часть теряется без пользы, и лишь отдельные пыльцевые зерна, случайно попав на рыльце пестика в цветке экземпляра того же вида, обеспечивают размножение. Такой способ опыления характерен для многих деревьев (не только цветковых, но и хвойных), злаков, осоковых и некоторых хорошо известных сорняков, например полыни и амброзии. Их летучая пыльца способна вызывать сенную лихорадку, от которой страдают многие люди. Особенно опасна в этом смысле цветущая в конце лета амброзия. Морфогене́з (англ. Morphogenesis, от греч. morphê форма и genesis происхождение, или буквально «формообразование») — возникновение и развитие органов, систем и частей тела организмов как в индивидуальном (онтогенез), так и в историческом, или эволюционном, развитии (филогенез). Изучение особенностей морфогенеза на разных этапах онтогенеза в целях управления развитием организмов составляет основную задачу биологии развития, а также генетики, молекулярной биологии,биохимии, эволюционной физиологии, и связано с изучением закономерностей наследственности. Опыление ветром у покрытосеменных вторично. Анемофильные группы их произошли от энтомофильных предков. Анемофилия характеризуется высокой специализацией. Это представление отнюдь не исключает возможность случайного опыления ветром у архаичных форм. У последних, как говорилось, допускается совмещение разных способов опыления. Существовавшее некогда мнение о первичности ветроопыления и примитивности анемофильных покрытосеменных сейчас полностью оставлено.