
- •1.Задачі лінійного програмування її модифікація.
- •2. Симплексний метод: ідея, вимоги та умови оптимальності.
- •3. Графічний метод розв’язування задач лінійного програмування.
- •4. Симплексний метод: алгоритм розв’язування.
- •5. Альтернативний оптимум задач лінійного програмування.
- •6. Двоїста пара задач: типи та алгоритми перетворення.
- •7. Теорія двоїстості.
- •8. Розв’язування двоїстих задач.
- •9. Відповідність двоїстих оцінок змінних двоїстої пари задач.
- •10. Транспортна задача: математична модель, типи та особливості.
- •11) Умови оптимальності в методі потенціалів, її обґрунтування.
- •12) Методи будування базисних планів при розв’язуванні транспортної задачі.
- •Початковий опорний план
- •Метод північно-західного кута
- •Метод найменшої вартості
- •13) Метод потенціалів Метод потенціалів
- •Приклад
- •14) Транспортна задача: випадки вродженості
- •15) Альтернативний оптимум в транспортних задачах
- •16) Динамічне програмування: математична модель, особливості.
- •17) Основні вимоги, переваги, недоліки в методі динамічного програмування.
- •18) Види цільової функції в методі динамічного програмування.
- •19) Алгоритм розв’язування методом динамічного програмування
- •20) Задачі про призначення: особливості, математична модель, та алгоритм
- •4.2. Математична модель задачі про призначення.
- •4.3. Рішення задачі про призначення
- •21) Угорський метод
- •1 Постановка завдання
- •2 Розв’язання завдання
- •22. Задача про кільцевий маршрут та її розв’язування.
- •23. Алгоритм методу розгалужень та меж.
- •24. Задача про максимальний потік та її розв’язок.
- •25. Задача про найкоротшу відстань та метод її розв’язування.
- •26. Теорія ігор: ціна ігор.
- •27. Теорія ігор: сідлова точка.
- •28. Теорія ігор: теорія мінімакса ті її використання.
- •29. Зведення ігрових задач до задач лінійного програмування.
13) Метод потенціалів Метод потенціалів
У методі потенціалів кожному рядку i і кожному стовпцю j транспортної таблиці ставляться у відповідність числа (потенціали) і . Для кожної базисної змінної потенціали і задовольняють рівнянню:
Щоб знайти значення потенціалів з цієї системи рівнянь, потрібно присвоїти одному з них довільне значення (зазвичай вважають ) і потім послідовно обчислювати значення інших потенціалів.
Далі, використовуючи знайдені значення потенціалів, для кожної небазисной змінної обчислюються величини .
Якщо всі ці числа є недодатними то опорний план є оптимальним і розв'язування на цьому завершується. В іншому випадку знаходиться найбільше додатнє значення і відповідна йому змінна вводиться в базис. Для визначення змінної, що виводиться з базису будується послідовність:
де — змінна, що вводиться в базис, а всі інші змінні є базисними. Окрім цього в цій послідовності при переході на кожному етапі одна координата залишається незмінною і якщо при певному переході незмінною була перша координата, то на наступному незмінною буде друга. Якщо зображувати перехід між змінними на транспортній таблиці стрілками між відповідними клітинами це оначає, що переходи можуть бути лише вертикальними чи горизонтальними, але не діагональними, і також після горизонтального переходу має йти вертикальний і навпаки.
Після побудови послідовності можна записати значення відповідних змінних і знайти мінімальне значення серед чисел, що стоять на непарних позиціях. Наступним кроком це число слід додати до всіх змінних, що стоять на парних позиціях і віднти від всіх змінних, що стоять на непарних. Змінна якій відповідало найменше число виводиться з базиса.
В такий спосіб одержується новий опорний план і до нього можна знову застосувати ті ж дії.
Приклад
Візьмемо попередній приклад з початковим опорним планом одержаним методом найменшої вартості.
Спершу обчислюємо значення потенціалів:
Взявши можна одержати інші значення потенціалів:
Для
небазисних змінних порахуємо
Серед
одержаних значень є одне додатне, тому
опорний план не є оптимальним, і
змінну
потрібно
ввести в базис. Далі будується цикл
і
відповідні значення змінних 0, 10, 0, 15, 0.
Найменше значення серед чисел на парних
позиціях рівно 10, отже слід додати 10 до
значень
і
(що
стоять на непарних позиціях в послідовності)
і відняти 10 від
і
що
стоять на непарних позиціях в
послідовності). Після цих змін одержується
новий опорний план, що зображується в
таблиці:
|
|
|
|
|
Кількість |
|
|
5 |
|
10 |
15 |
|
|
10 |
15 |
|
25 |
|
5 |
|
|
5 |
10 |
Кількість |
5 |
15 |
15 |
15 |
|
Повторюючи обчислення для потенціалів можна переконатися, що цей опорний план є оптимальним. Отже розв'язком транспортної задачі буде:
Для
інших змінних значення рівні нулю.
Найменше значення цільової функції: