Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
все билеты.docx
Скачиваний:
36
Добавлен:
20.09.2019
Размер:
597.26 Кб
Скачать

17 Билет.

Окислительно-Восстановительная реакция – это химические реакции, которые протекают с изменением степени окисления атомов в молекулах реагирующих веществ.

Степень окисления элементов изменяются, потому что при протекании ОВР происходит переход электрона от атомов одного элемента к атомам другого элемента, то есть один атом отдает электроны, а другой атом присоединяет.

Процесс отдачи электрона называется окислением.

При окислении степень окисления элемента повышается. Процесс присоединения электронов называется восстановлением. При восстановлении степень окисления понижается.

Окисление всегда сопровождается восстановлением, а восстановление окислением, поэтому ОВР представляет собой единство двух противоположных процессов – окисление и восстановление.

Атомы, молекулы или ионы которые отдают электроны в процессе окисления – восстановители. Восстановители в процессе реакции окисляются.

Атомы, молекулы или ионы которые отдают электроны в процессе восстановления – окислители.

Окислители в процессе реакции восстанавливаются.

1 группа – вещества, которые могут быть только окислителями (находятся в высшей степени окисления).

2 группа – вещества, которые могут быть восстановителями (в низшей степени окисления).

3 группа – вещества, которые могут быть и окислителями и восстановителями (с промежуточными степенями окисления).

Типы ОВР:

  1. Межмолекулярные реакции – это реакции которые идут с изменением степени окисления атомов в различных молекулах.

  2. Внутримолекулярные реакции – это реакции в которых атомы изменяющие свои степени окисления находятся в одной молекуле.

  3. Реакции диспропорционирования (самоокисление – самовосстановление) – это реакции которые идут с изменением степени окисления атомов одного и того же элемента.

При переходе некоторого количества металла из решетки в раствор освобождается эквивалентное количество электронов. Поскольку электроны не способны гидратироваться, они остаются в металле, сообщая ему отрицательный заряд. Раствор вблизи поверхности металла в свою очередь обогатился избыточным количеством положительных зарядов, перешедших из металла в раствор вместе с катионами. Таким образом, на границе металл—электролит появляется двойной электрический слой, в котором металл оказывается отрицательно заряженным, а электролит — положительно заряженным. Возникает скачок потенциала.

Электрические потенциалы на фазовых границах При соприкосновении проводника первого рода (электрода) с полярным растворителем (водой) либо раствором электролита на границе электрод – жидкость возникает т.н. двойной электрический слой (ДЭС). В качестве примера рассмотрим медный электрод, погруженный в воду либо в раствор сульфата меди. При погружении медного электрода в воду часть ионов меди, находящихся в узлах кристаллической решетки, в результате взаимодействия с диполями воды будет переходить в раствор. Возникающий при этом на электроде отрицательный заряд будет удерживать перешедшие в раствор ионы в приэлектродном пространстве – образуется двойной электрический слой.

В гальваническом элементе химическая энергия преобразуется в электриче­скую. Простейший гальванический элемент представляет собой два сосуда с рас­творами CuSO4 и ZnSO4, в которые погружены соответственно медная и цинковая пластинки. Сосуды соединены между собой трубкой, которая называется солевым мостиком, заполненной раствором электролита (например, KCl). Такая система на­зывается медно-цинковым гальваническим элементом. На аноде протекает процесс окисления цинка:

Zn – 2е = Zn2+.

В результате этого атомы цинка превращаются в ионы, которые переходят в раствор, а цинковый анод растворяется, и его масса уменьшается. Суммарное уравнение реакции, протекающей в медно-цинковом гальваниче­ском элементе, можно представить так:

Zn + Cu2+ = Zn2+ + Cu.

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил ( ). В замкнутом контуре ( ) тогда ЭДС будет равна:

, где  — элемент длины контура.

Стандартный водоро́дный электро́д — электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах. Водородный электрод (ВЭ) представляет собой пластинку или проволоку из металла, хорошо поглощающего газообразный водород (обычно используют платину или палладий), насыщенную водородом (при атмосферном давлении) и погруженную в водный раствор, содержащий ионы водорода. Потенциал пластины зависит[уточнить] от концентрации ионов Н+ в растворе. Электрод является эталоном, относительно которого ведется отсчет электродного потенциала определяемой химической реакции. При давлении водорода 1 атм., концентрации протонов в растворе 1 моль/л и температуре 298 К потенциал ВЭ принимают равным 0 В. При сборке гальванического элемента из ВЭ и определяемого электрода, на поверхности платины обратимо протекает реакция:

+ + 2e = H2

то есть, происходит либо восстановление водорода, либо его окисление — это зависит от потенциала реакции, протекающей на определяемом электроде

Электрохимический ряд активности (ряд напряжений, ряд стандартных электродных потенциалов) металлов — последовательность, в которой металлы расположены в порядке увеличения их стандартных электрохимических потенциалов φ0, отвечающих полуреакции восстановления катиона металла Men+: Men+ + nē → Me

Li→Rb→K→Ba→Sr→Ca→Na→Mg→Al→Mn→Zn→Cr→Fe→Cd→Co→Ni→Sn→Pb→H→Sb→Bi→Cu→Hg→Ag→Pd→Pt→Au

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительные реакциях в водных растворах.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

Вывод уравнения Нернста

,

где

  •  — электродный потенциал,  — стандартный электродный потенциал, измеряется в вольтах;

  •  — универсальная газовая постоянная, равная 8.31 Дж/(моль·K);

  •  — абсолютная температура;

  •  — постоянная Фарадея, равная 96485,35 Кл·моль−1;

  •  — число моль электронов, участвующих в процессе;

  • и  — активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.

Если в формулу Нернста подставить числовые значения констант и и перейти от натуральных логарифмов к десятичным, то при получим

Билет 18