Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
все билеты.docx
Скачиваний:
32
Добавлен:
20.09.2019
Размер:
597.26 Кб
Скачать

Билет 1

Квантово-механическая модель атома

Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряданейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).

Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяетсяэлектрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).

Массу атома принято измерять в атомных единицах массы, равных 112 от массы атома стабильного изотопа углерода 12C.

Ква́нтовое число́ в квантовой механике — численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицыядраатома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.

Некоторые квантовые числа связаны с движением в пространстве и характеризуют пространственное распределение волновой функции частицы. Это, например, радиальное (главное) ( ), орбитальное ( ) и магнитное ( ) квантовые числа электрона в атоме, которые определяются как число узлов радиальной волновой функции, значение орбитального углового момента и его проекция на заданную ось, соответственно.

Некоторые другие квантовые числа никак не связаны с перемещением в обычном пространстве, а отражают «внутреннее» состояние частицы. К таким квантовым числам относитсяспин и его проекция. В ядерной физике вводится также изоспин, а в физике элементарных частиц появляется цветочарованиепрелесть (или красота[1]) и истинность.

Атомная орбиталь — одноэлектронная волновая функция, полученная решением уравнения Шрёдингера для данного атома[1], задается главным nорбитальным l и магнитным mквантовыми числами.

Волновая функция рассчитывается по волновому уравнению Шрёдингера в рамках одноэлектронного приближения (метод Хартри - Фока) как волновая функция электрона, находящегося в самосогласованном поле, создаваемым ядром атома со всеми остальными электронами атома.

Сам Э.Шрёдингер рассматривал электрон в атоме как отрицательно заряженное облако, плотность которого пропорциональна квадрату значения волновой функции в соответствующей точке атома. В таком виде понятие электронного облака было воспринято и в теоретической химии.

Однако большинство физиков не разделяли убеждений Э.Шрёдингера - доказательства существования электрона как "отрицательно заряженного облака" не было. Макс Борн обосновал вероятностную трактовку квадрата волновой функции. В 1950г. Э.Шрёдингер в статье "Что такое элементарная частица?" вынужден согласиться с доводами М.Борна, которому в 1954 году присуждена Нобелевская премия по физике с формулировкой "За фундаментальное исследование в области квантовой механики, особенно за статистическую интерпретацию волновой функции".

Название «орбиталь» (а не орбита) отражает геометрическое представление о стационарных состояниях электрона в атоме; такое особое название отражает тот факт, что состояния электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории. Совокупность атомных орбиталей с одинаковым значением главного квантового числа n составляют одну электронную оболочку.

При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественныхфермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.

Принцип был сформулирован для электронов Вольфгангом Паули в 1925 г. в процессе работы над квантомеханической интерпретацией аномального эффекта Зеемана и в дальнейшем распространён на все частицы с полуцелым спином. Полное обобщённое доказательство принципа было сделано им в 1940 г. в рамках релятивистской квантовой механикиволновая функция системы фермионов является антисимметричной относительно их перестановок, поведение систем таких частиц описывается статистикой Ферми — Дирака.

Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом.

В статистической физике принцип Паули иногда формулируется в терминах чисел заполнения: в системе одинаковых частиц, описываемых антисимметричной волновой функцией, числа заполнения могут принимать лишь два значения 

Строение многоэлектронных атомов

Попытки применить теорию Бора к атомам, имеющим не один, а много электронов, встретили существенные трудности, которые носят отчасти принципиальный ха­рактер. Эти трудности постепенно преодолеваются путем замены старых представлений новыми, более соответ­ствующими природе атома, и применения методов совре­менной квантовой физики.

В результате теоретических и экспериментальных исследований установлено следующее. В многоэлектрон­ных атомах электроны обращаются вокруг ядра на раз­ных расстояниях от него, располагаясь несколькими слоями. В каждом слое может находиться лишь вполне определенное число электронов. Первый слой, ближай­ший к ядру, получил название /(-слоя; в нем может на­ходиться не более 2 электронов. Далее следует второй слой (Ь-слой), имеющий не более 8 электронов; третий слой (М-слой), содержащий не более 18 электронов, и т. д. При построении электронной оболочки атома спер­ва заполняется слой /С, затем Ь, М и т. д. Если число электронов в атоме 2 меньше того их количества, кото­рое необходимо для заполнения слоев, то последний (верхний) слой остается незаполненным.

Билет 2

1.

Периодическая система химических элементов (таблица Менделеева) —классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году.

В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

2.

Зависимость атомных радиусов (r) от заряда ядра  (Z) имеет периодический характер. В пределах одного периода с увеличением Z проявляется тенденция к уменьшению размеров атомов. Это объясняется увеличением притяжения электронов внешнего слоя к ядру по мере возрастания заряда ядра. Потеря атомом электронов приводит к уменьшению его эффективных размеров, а присоединение избыточных электронов – к увеличению. Поэтому радиус положительного иона (катиона) всегда меньше, а радиус отрицательного иона (аниона) всегда больше, чем радиус соответствующего электро -нейтрального атома.

Степень притяжения электрона к ядру и, следовательно, потенциал ионизации зависят от ряда факторов, и прежде всего от заряда ядра, от расстояния между электроном и ядром, от экранирующего влияния других электронов. Так, у всех атомов, кроме элементов первого периода, влияние ядра на электроны внешнего слоя экранировано электронами внутренних слоев.

Поле ядра атома, удерживающее электроны, притягивает также и свободный электрон, если он окажется вблизи атома. Правда, этот электрон испытывает отталкивание со стороны электронов атома. Для многих атомов энергия притяжения дополнительного электрона к ядру превышает энергию его отталкивания от электронных оболочек. Эти атомы могут присоединять электрон, образуя устойчивый однозарядный анион. Энергию отрыва электрона от отрицательного однозарядного иона в процессе  X– – e → X0  называют сродством атома к электрону (A), измеряемым в кДж/моль или эВ . При присоединении двух и более электронов к атому отталкивание преобладает над притяжением – сродство атома к двум и более электронам всегда отрицательно. Поэтому одноатомные многозарядные отрицательные ионы (O2–, S2–, N3– и т.п.) в свободном состоянии существовать не могут.

Сродство к электрону известно не для всех атомов. Максимальным сродством к электрону обладают атомы галогенов.

Электроотрицательность. Эта величина характеризует способность атома в молекуле притягивать к себе связующие электроны.Электроотрицательность не следует путать со сродством к электрону: первое понятие относится к атому в составе молекулы, а второе – к изолированному атому. Абсолютная электроотрицательность (кДж/моль или эВ ) равна сумме энергии ионизации и сродства к электрону:  АЭО=I+A. На практике часто применяется величина относительной электроотрицательности, равная отношению АЭО данного элемента к АЭО лития (535 кДж/моль):

Электроотрицательность уменьшается сверху вниз по группе и увеличивается слева направо по периоду. Наибольшее значение электроотрицательности имеет фтор, наименьшее – цезий. Водород занимает промежуточное положение, т.е. при взаимодействии с одними элементами (например, с F) он отдает электрон, а при взаимодействии с другими (например, с Rb) – приобретает электрон.

Окислительно-восстановительные свойства нейтральных атомов. Эти свойства определяются значениями энергии ионизации и сродства к электрону. Восстановительные свойства проявляет атом, отдающий электрон, а окислительные – атом, принимающий электрон. В периоде слева направо восстановительные свойства ослабевают, т.к. потенциал ионизации возрастает. В подгруппах сверху вниз восстановительные свойства нейтральных атомов усиливаются, поскольку потенциал ионизации в этом направлении уменьшается. Окислительные свойства, напротив, усиливаются слева направо в периоде и ослабевают сверху вниз в подгруппе, что связано с тенденциями в изменении сродства к электрону.

 Кислотно-основные свойства соединений. Свойства оксидов и гидроксидов элементов зависят главным образом от заряда и радиуса центрального атома.

Билет 5

5. 1 вопрос.

Основные законы в химии»

  • Закон Авогадро

  • Закон кратных отношений

  • Закон постоянства состава

  • Закон сохранения массы

  1. Закон Авога́дро — одно из важных основных положений химии, гласящее, что «в равных объёмах различных газов, взятых при одинаковых температуре и давлении, содержится одно и то же число молекул». Было сформулировано ещё в 1811 году Амедео Авогадро (17761856),

Первое следствие из закона Авогадро: один моль любого газа при одинаковых условиях занимает одинаковый объём.

В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:

.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.

Положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес тел, способных переходить в газообразное или парообразное состояние. Если через m мы обозначим частичный вес тела, и через d — удельный вес его в парообразном состоянии, то отношение m / d должно быть постоянным для всех тел. Опыт показал, что для всех изученных тел, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из удельного веса воздуха, принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицу удельный вес водорода. Обозначив эту постоянную, или, что то же, общий всем парам и газам частичный объём через С, мы из формулы имеем с другой стороны m = dC. Так как удельный вес пара определяется легко, то, подставляя значение dв формулу, выводится и неизвестный частичный вес данного тела.

Элементарный анализ, например, одного из полибутиленов указывает, в нём пайное отношение углерода к водороду, как 1 к 2, а потому частичный вес его может быть выражен формулой СН2 или C2H4, C4H8 и вообще (СН2)n. Частичный вес этого углеводорода тотчас определяется, следуя закону Авогадро, раз мы знаем удельный вес, т. е. плотность его пара; он определен Бутлеровым и оказался 5,85 (по отношению к воздуху); т. е. частичный вес его будет 5,85 · 28,9 = 169,06. Формуле C11H22 отвечает частичный вес 154, формуле C12H24 — 168, а C13H26 — 182. Формула C12H24 близко отвечает наблюденной величине, а потому она и должна выражать собою величину частицы нашего углеводорода CH2.

2. Закон кратных отношений — один из стехиометрических законов химии: если два элемента образуют друг с другом более одного соединения, то массы одного из элементов, приходящиеся на одну и ту же массу другого элемента, относятся как целые числа, обычно небольшие.

Закон кратных отношений открыт в 1803 Дж.Дальтоном и истолкован им с позиций атомизма.

3. Закон постоянства состава (Ж.Л. Пруст, 1801—1808гг.) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии.

Закон постоянства состава не выполняется для бертоллидов (соединений переменного состава). Однако условно для простоты состав многих бертоллидов записывают как постоянный. Например, состав оксида железа(II)записывают в виде FeO (вместо более точной формулы Fe1-xO).

4. Закон сохранения массы — закон физики, согласно которому масса физической системы сохраняется при всех природных и искусственных процессах.

В исторической, метафизической форме, согласно которой вещество несотворимо и неуничтожимо, закон известен с древнейших времён. Позднее появилась количественная формулировка, согласно которой мерой количества вещества является масса. В качестве меры массы объекта вначале использовался его вес.

С точки зрения классической механики и химии сохраняется масса закрытой физической системы и сумма масс компонентов этой системы (масса считается аддитивной, то есть масса системы равна сумме масс составляющих её компонентов).

В современной физике масса не является мерой количества вещества. Закон сохранения массы тесно связан с законом сохранения энергии. Масса зависит от внутренней энергиисистемы.

С точки зрения современной физики сохраняется масса только изолированной физической системы, то есть при отсутствии энергообмена с внешней средой. Не сохраняется сумма масс компонентов системы (масса неаддитивна). Например, при радиоактивном распаде в изолированной системе состоявшей из вещества и радиации, совокупная масса вещества уменьшается, но масса системы сохраняется, несмотря на то что масса радиации может быть нулевая.

2.Вопрос.(хз может не полный ) Стехиометрические расчеты по уравнениям реакций.

   На основе закона сохранения массы и закона постоянства состава для необратимой (полностью протекающей в одном направлении) реакции можно расчитать по известному значению массы одного из веществ (реагента или продукта) значения массы всех остальных веществ принимающих участие в реакции. Уравнение реакции должно быть точно известно. Такие расчеты являются предметом раздела химии, называемого стехиометрия.    Стехиометрические расчеты по уравнениям реакций основаны на соотношении:

mA

 

nA·MA

-----

-----

mB

nB·MB

где А - формула вещества в реакции; mA - известная масса вещества А; В - формула любого другого вещества (реагента, продукта) в реакции; mВ - значение массы вещества В которую необходимо найти; nA и nB - количества веществ, численно равные стехиометрическим коэффициентам при формулах соответствующих веществ в уравнении реакции.

   Искомую величину mВ расчитывают по уравнению:

mВ

 

mA·nВ·MВ

-----------

nА·MА

3.Вопрос

Моль (обозначение: моль, международное: mol) — единица измерения количества вещества. Соответствует количеству вещества, в котором содержится NA частиц (молекул, атомов, ионов, или любых других тождественных структурных частиц).[1] NA это постоянная Авогадро, равная количеству атомов в 12 граммах нуклида углерода 12C. Таким образом, количество частиц в одном моле любого вещества постоянно и равно числу Авогадро NA.

NA = 6,02214179(30)·1023.

Иначе говоря, моль — это количество вещества, масса которого, выраженная в граммах, численно равняется его массе в атомных единицах массы. Иногда моль молекул, атомов или ионов называют, соответственно, грамм-молекулой, грамм-атомом и грамм-ионом.

4.Вопрос

 Эквивалент - это реальная или условная частица, которая в химических реакциях способна принимать или отдавать единичный положительный (протон) или единичный отрицательный (электрон) заряд.

   Теперь становится ясной суть закона эквивалентов: элементарный акт химической реакции состоит в перегруппировке и обмене атомами и электонами сопровождающийся изменением зарядов атомов, доля или часть формульной частицы вещества учавствующая в одном таком элементарном акте и называется эквивалентом, поэтому один эквивалент одного вещества будет взаимодействовать только с одним эквивалентом другого вещества (или тогоже самого вещества в реакциях разложения и диспропорционирования) и в результате образуется один эквивалент нового вещества или веществ

   вещества реагируют и образуются в эквивалентных количествах

   Этот закон вывели немецкие химики Винцель и Рихтер в 1793 г.

5.Вопрос.

Эквивалентов закон

один из законов химии, согласно которому отношения масс вступающих в химическое взаимодействие веществ равны или кратны их эквивалентам химическим. В конце 18 в. И. Рихтер дал частную формулировку закона для нейтрализации кислоты основанием, а в более общей форме закон сформулировал английский химик У. Волластон в 1807.

В результате работ И. В. Рихтера (1792—1800) был открыт закон эквивалентов: все вещества реагируют в эквивалентных отношениях. Этот закон используется для количественных расчетов используется Математическое выражение закона эквивалентов имеет следующий вид:  m1/m2 = Мэкв(1)/Мэкв(2)  где: m 1 и m 2 - массы реагирующих или образующихся веществ,  Мэкв(1) и Мэкв(2) - эквивалентные массы этих веществ.  Например: определить массу соды (карбоната натрия) Na2CO3, необходимую для полной нейтрализации 1,96 г серной кислоты H2SO4.  Воспользуемся законом эквивалентов  m(Na2CO3)/m(H2SO4) = Мэкв(Na2CO3)/Мэкв( H2SO4)  Определяем эквивалентные массы веществ, исходя из их химических формул:  Мэкв (Na2CO3) = 106 /(2•1) = 53 г/моль;  Мэкв(H2SO4) = 98/2•1 = 49 г/моль.  Тогда:  m(Na2CO3) / 1,96г = 53 г/моль / 49 г/моль  m(Na2CO3)= 2,12 г.