
- •Isbn 5-8112-1778-1
- •Глава 11. Элементы векторной алгебры
- •§ 5. Векторы....................................................... 39
- •§ 6. Скалярное произведение векторов и его свойства............ 47
- •§ 7. Векторное произведение векторов и его свойства. . . . . . . . . . . . 51
- •§ 8. Смешанное произведение векторов.. . . . . . . . . . . . . . . . . . . . . . . . . . 55
- •9.1. Основные понятия . .. .. .................. . ............... 58
- •10.1. Основные понятия .. ........ . ... . .. . . .. .. . .. . . . .. . . .. . ... 64
- •11 .1. Основные понятия..... . ................ ... .............. 74
- •Глава IV. Аналитическая геометрия
- •§ 12. Уравнения поверхности и линии в простран стве ............. 90
- •12.1. Основные понятия . .... ... ..... . . .. . . . . . .. .. . ............ 90
- •§ 13. Множества. Действительные числа. . . . . . . . . . . . . . . . . . . . . . . . . . 116
- •§ 14. Функция. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
- •§ 15. Последовательности................................... ...... . 127
- •§ 16. Предел функции. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
- •§ 17. Бесконечно малые функции (б.М.Ф.) ....................... . . 136
- •§ 18. Эквивалентные бесконечно малые функции...... . ...... . .... 148
- •§ 19. Непрерывность функций. . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . ... 153
- •§ 20. Производная функции. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
- •§ 21. Дифференцирование неявных и параметрически заданных
- •§ 22. Логарифмическое дифференцирование. . .. . . . . . . . . . . . . . . . . . .. 181
- •§ 23. Производные высших порядков. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 182
- •§ 24. Дифференциал функции. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
- •§ 25. Исследование функций при помощи производных. . . . . . . . . . .. 192
- •27.1. Основные понятия....................................... 218
- •43.1. Основные понятия....................................... 304
- •48.1. Основные понятия. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
- •§ 49. Дифференциальные уравнения высших порядков. . . . . . . . . . .. 344
- •49.1. Основные понятия....................................... 344
- •§ 50. Интегрирование ду второго порядка с постоянными
- •§ 51. Линейные неоднородные дифференциальные уравнения
- •§ 52. Системы дифференциальных уравнений. . . . . . . . . . . . . . . . . . . . . 367
- •52.1. Основные понятия .................. '. . . . . . . . . . . . . . . . . . . . . 367
- •Глава XI. Двойные и тройные интегралы
- •§ 53. Двойной интеграл ................. , . . . . . . . . . . . . . . . . . . . . . . . . . .. 378
- •§ 54. Тройной интеграл. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 391
- •54.1. Основные понятия..... ....................... ........... 391
- •§ 55. Криволинейный интеграл 1 рода . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
- •55.1. Основные понятия. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
- •§ 56. Криволинейный интеграл Прода. ..... ......... . . . .. . . ... . . .. 407
- •§ 57. Поверхностный интеграл 1 рода.............................. 420
- •§ 58. Поверхностный интеграл 11 рода. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
- •58.1. Основные понятия ......... .............................. 427
- •Глава xhi. Числовые ряды
- •§ 59. Числовые ряды . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
- •59.1. Основные понятия ... . ... .... .. ...... . ................... 438
- •§ 60. Достаточные признаки сходимости
- •62.1. Основные понятия....................................... 457
- •74.1. Основные понятия....................................... 525
- •§ 75. Интегрирование функции комплексного переменного ....... '. 540
- •§ 76. Ряды в комплексной плоскости. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 551
- •Глава 1. Элементы линейной алгебры
- •§1. Матрицы
- •1.1. Основные понятия
- •1.2. Действия над матрицами
- •§ 2. Определители
- •2.1. Основные понятия
- •2.2. Свойства определителей
- •§ 3. Невырожденные матрицы
- •3.1. Основные понятия
- •3.2. Обратная матрица
- •3.3. Ранг матрицы
- •§ 4. Системы линейных уравнений
- •4.1. 'Основные понятия
- •4.2. Решение систем линейных уравнений.
- •4.3. Решение невырожденных линейных систем.
- •§5. Векторы
- •5.1. Основные понятия
- •5.2. Линейные операции над векторами
- •5.4. Разложение вектора по ортам координатных осей.
- •5.5. Действия над векторами, заданными проекциями
- •§ 6. Скалярное произведение векторов
- •6.1. Определение скалярного произведения
- •§ 7. ВеКторное произведение векторов
- •§ 8. Смешанное произведение е3екторов '
- •Глава 111. Аналитическая r;еометрия
- •§ 9. Система координат на плоскости
- •9.1. Основные понятия
- •§ 10. Линии на плоскости
- •10.1 .. Основные понятия
- •§ 11. Линии второго порядка на плоскости
- •11.1. Основные понятия
- •Глава IV. Аналитическая геометрия
- •§ 12. Уравнения поверхности и линии
- •12.1. Основные понятия
- •Глава V. Введение в анализ
- •§ 13. Множества. Действительные числа
- •13.1. Основные понятия
- •§ 14. Функция
- •§ 15. Последовательности
- •§ 16. Предел Функции
- •§ 17. Бесконечно малые функции (б.М.Ф.)
- •§ 18. Эквивалентные бесконечно малые
- •§ 21. Дифференцирование неявных
- •§ 22. Логарифмическое дифференцирование
- •§ 23. Производные высujих порядков
- •§ 24. Дифференциал функции
- •§ 25. Исследование функций при помощи
- •Глава VI. Комплексные числа
- •§ 27. Понятие и гiредст4вления
- •27.1. Основные понятия
- •§ 28. Действия над комi1лексными числами
- •§ 29. Неопределенный интеграл
- •§ 30. Основные методы интегрирования
- •§ 32. Интегрирование тригонометрических
- •§ 33. Интегрирование иррациональных
- •§ 34. «Берущиеся» и «неберущиеся»
- •Глава VIII., определенныи интеграл
- •§3Б. Геометрический и физический смысл
- •§37., Формула. Ньютона-лейбница
- •§ 39. Вычисления определенного интеграла
- •§ 40. Несобственные интегралы
- •§ 42. Гiриближенное вычисление
- •§ 43. Функции двух переменных
- •43.1. Основные понятия
- •§ 44. Производные и дифференциалы
- •§ 45. Касательная плоскость и нормаль
- •46.1. Основные понятия
- •§ 47. Общие сведения о дифференциальных
- •47.1. Основные понятия
- •§ 48. Дифференциальные уравнения первого
- •48.1. Основные понятия
- •§ 49. Дифференциальные уравнения высших
- •49.1. Основные понятия
- •§ 50. Интегрирование ду второго порядка
- •§ 51. Линейные неоднородные
- •§ 52. Системы tJ.Ифференциальных
- •52.1. Основные понятия
- •§ 53. Двойной интеграл
- •§ 54. Тройной интеграл
- •54.1. Основные понятия
- •§ 55. Криволинейный интеграл I рода
- •55.1. Основные понятия
- •§ 56. Криволинейный интеграл 11 рода
- •56.1. Основные понятия
- •§ 57. Поверхностный интеграл I рода
- •57.1. Основные понятия
- •58.1. Основные понятия
- •Глава XIII. Числовые ряды
- •§ 59. Числовые ряды
- •59.1. Основные понятия
- •§ 61. Знакочередующиеся
- •Глава XIV. Степенные ряды
- •§ 62. Функциональные ряды
- •62.1. Основные понятия
- •§ 63. Сходимость ctErlEhHbIx рядов
- •§ 64. Разложение функций в ctErlEhHbIe
- •§ 65. Некоторые приложения степенных
- •§ 66. Ряды фурье
- •§ 67. Разложение в ряд фурье
- •Глава XVI. Элементы теории поля
- •§ 69. Основные понятия теории поля
- •§ 72. OrlEpatop гамильтона
- •§ 73. Некоторые свойства основных
- •Глава XVII. Элементы теории функции
- •§ 74. Функции комплексного rlEpemehhOrO
- •74.1. Основные понятия
- •§ 76. Ряды в комплексной плоскости
- •§ 78. Преобра30вание лапласа
- •§ 79. Обратное ГlРеобразование лапласа
§ 45. Касательная плоскость и нормаль
К IlОВЕРХНОСТИ
Рассмотрим одно из геометрических приложений частных производных
функции двух переменных. Пусть функция Z = f(x;y) дифференцируема
в точке (ха; Уа) не которой области D Е 1R2 . Рассечем
поверхность S, изображающую функ-
х
Рис. 208
цию Z, плоскостями х = ха и У = Уа
(см. рис. 208). Плоскость х = ха пересекает
поверхность S по некоторой
линии Za (у), уравнение которой получается
подстановкой в выражение исходной
функции Z = f(x; У) вместо
х числа ха. Точка Ма(Ха; Уа; f(xa; Уа))
принадлежит кривой Za (У). в силу
дифференцируемости функции Z в
точке Ма функция za(Y) также является
дифференцируемой в точке У =
= Уа. Следовательно, в этой точке в
плоскостих = Ха к кривой Za (У) может
быть проведена касательная l1.
Проводя аналогичные рассуждения для сечения У = Уа, построим
касательную l2 к кривой za(x) в точке х = Ха. Прямые l1 и l2 определяют
плоскость а, которая называется r.;асаmелън.оi1 nлосr.;осmъ1О к
поверхности S в точке Мо .
Составим ее уравнение. Так как плоскость а проходит через точку
Мо(Хо; Уо; zo), то ее уравнение может быть записано в виде
А(х - хо) + В(у - Уо) + C(z - za) = О,
которое можно переписать так:
( 45.1)
318
(разделив уравнение на -с и обозначив _Ас = А1 , !!С = В1 ).
Найдем А 1 и В 1 • Уравнения касательных [1 и l2 имеют вид
соответственно.
Z - Za = 1~(xa; Уа) . (У - Уа), х = ха;
Z - Za = 1~(xa; Уа) . (х - ха), У = Уа
Касательная II лежит в плоскости а, следовательно, координаты
всех точек [1 удовлетворяют уравнению (45.1). Этот факт можно записать
в виде системы
{
Z - Za = 1~(xa; Уа)(У - Уа),
х = ха,
Z - Za = А 1 (х - ха) + В1 (У - Уа).
Разрешая эту систему относительно В1 , получим, что В1 =
= 1~(xa; Уа).
Проводя аналогичные рассуждения для касательной [2, легко установить,
что А 1 = 1~(xa; Уа).
Подставив значения А ! и В1 В уравнение (45.1), получаем искомое
уравнение касательной плоскости:
I Z - Za = 1~(xa; Уа) . (х - ха) + 1~(xa; Уа) . СУ - Ya)·1 (45.2)
~ Прямая, проходящая через точку МО и перпендикулярная касательной
плоскости, построенной в этой точке поверхности, называется
ее нормал.ью.
Используя условие перпендикулярности прямой и плоскости (см.
с. 103), легко получить канонические уравнения нормали:
х - ха
1~(xa; Уа)
У - Уа
1~(xa; Уа)
Z - Za
-1
(45.3)
Если поверхность S задана уравнением F(x; У; z) = О, то уравнения
(45.2) и (45.3), с учетом того, что частные производные могут быть
найдены как производные неявной функции:
l ' ( ) F~(xa; Уа)
х ха; Уа = - F' ( . ) ,
z Ха,Уа
'( ) F;(xa;Ya)
1 у ха; Уа о:: - F' ( . )
z Ха,Уа
(см. формулы (44.12», примут соответственно вид
и
F~(xa; Уа) . (х - ха) + F;(xa; Уа) . (У - Уа) + F~(xa; Уа) . (z - za) = о
х - ха
F~ (ха; Уа)
У - Уа
F;(xa; Уа)
319
Z - Za
F~(xa; уа)'
За,м,е'Чанuе. Формулы касательной плоскости и нормали к поверхности
получены для обыкновенных, т. е. не особых, точек поверхности.
Точка Мо поверхности называется особо11 , если в этой точке все частные
производные равны нулю или хотя бы одна из них не существует.
Такие точки мы не рассматриваем.
При.мер 45.1. Написать уравнения касательной плоскости и нормали
к параболоиду вращения z = х2 + у2 В точке Мо (l; -1; 2).
а Решение: Здесь z~ = f~(x;y) = 2х, f~(x;y) = 2у, f~(l;-l) = 2,
f~(l; -1) = -2. Пользуясь формулами (45.2) и (45.3) получаем уравнение
касательной плоскости: z - 2 = 2· (х - 1) - 2 . (У + 1) или
2х - 2у - z - 2 = О и уравнение нормали: х -2 1 -- lL-±2.! -- z --12' • § 46. ЭКСТРЕМУМ ФУНКЦИИ ДВУХ ПЕРЕМЕННЫХ