Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Andryusha_uchi_fiziku.doc
Скачиваний:
29
Добавлен:
18.09.2019
Размер:
2.96 Mб
Скачать

Вопрос 29. Упругие волны. Уравнения плоской и сферической волны. Волновое уравнение.

Упругие волны - упругие возмущения, распространяющиеся в твёрдой, жидкой и газообразной средах. Например, волны, возникающие в земной коре при землетрясениях, звуковые и ультразвуковые волны в жидкостях и газах и др. При распространении У. в. происходит перенос энергии упругой деформации в отсутствии потока вещества, который имеет место только в особых случаях, например при акустическом ветре. Всякая гармоническая У. в. характеризуется амплитудой и частотой колебания частиц среды, длиной волны, фазовой и групповой скоростями, а также законом распределения смещений и напряжений по фронту волны. Особенность У. в. состоит в том, что их фазовая и групповая скорости не зависят от амплитуды и геометрии волны (плоская, сферическая, цилиндрическая волны).

В жидкостях и газах, которые обладают упругостью объёма, но не обладают упругостью формы, могут распространяться лишь продольные волны разрежения — сжатия, где колебания частиц среды происходят в направлении её распространения. Фазовая скорость равна , где К — модуль всестороннего сжатия, r плотность среды. Пример таких У. в. — звуковые волны.

В однородной изотропной бесконечно протяжённой твёрдой среде могут распространяться У. в, только двух типов — продольные и сдвиговые. В продольных движение частиц параллельно направлению распространения волны, а деформация представляет собой комбинацию всестороннего сжатия (растяжения) и чистого сдвига. В сдвиговых волнах движение частиц перпендикулярно направлению распространения волны, а деформация является чистым сдвигом. Фазовая скорость продольных волн , сдвиговых — (G — модуль сдвига).

Уравнением волны  называется выражение, которое дает смещение колеблющейся точки как функцию ее координат (x, y, z) и времени t.

 

.

 (5.2.1)

 

      Эта функция должна быть периодической как относительно времени, так и координат (волна – это распространяющееся колебание, следовательно периодически повторяющееся движение). Кроме того, точки, отстоящие друг от друга на расстоянии l, колеблются одинаковым образом.

Уравнение плоской волны

      Найдем вид функции x в случае плоской волны, предполагая, что колебания носят гармонический характер.

      Направим оси координат так, чтобы ось x совпадала с направлением распространения волны. Тогда волновая поверхность будет перпендикулярна оси x. Так как все точки волновой поверхности колеблются одинаково, смещение x будет зависеть только от х и t: . Пусть колебание точек, лежащих в плоскости , имеет вид (при начальной фазе )

 

 (5.2.2)

 

      Найдем вид колебания частиц в плоскости, соответствующей произвольному значению x. Чтобы пройти путь x, необходимо время .

      Следовательно, колебания частиц в плоскости x будут отставать по времени на t  от колебаний частиц в плоскости , т.е.

 

,

 (5.2.3)

 

      – это уравнение плоской волны.

      Таким образом, x  есть смещение любой из точек с координатой x в момент времени t. При выводе мы предполагали, что амплитуда колебания . Это будет, если энергия волны не поглощается средой.

      Такой же вид уравнение (5.2.3) будет иметь, если колебания распространяются вдоль оси y или z.

      В общем виде уравнение плоской волны записывается так:

 

,  или  .

 (5.2.4)

 

      Выражения (5.2.3) и (5.2.4) есть уравнения бегущей волны.

      Уравнение (5.2.3) описывает волну, распространяющуюся в сторону увеличения x. Волна, распространяющаяся в противоположном направлении, имеет вид:

.

      Уравнение волны можно записать и в другом виде.

      Введем волновое число ,   или в векторной форме:

 

,

 (5.2.5)

 

      где  – волновой вектор,  – нормаль к волновой поверхности.

      Так как , то . Отсюда . Тогда уравнение плоской волны запишется так:

 

.

 (5.2.6)

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]