- •Донецьк 2006
- •Integral calculus lecture no. 19. Primitive and indefinite integral
- •Point 1. Primitive
- •Properties of primitives
- •Point 2. Indefinite integral and its properties
- •Point 3. Integration by substitution (change of a variable)
- •Point 4. Integration by parts
- •Lecture no.20. Classes of integrable functions
- •Point 1. Rational functions (rational fractions)
- •Point 2. Trigonometric functions
- •Universal trigonometrical substitution
- •Other substitutions
- •Point 3. Irrational functions
- •Quadratic irrationalities. Trigonometric substitutions
- •Quadratic irrationalities (general case)
- •Indefinite integral: Basic Terminology
- •Lecture no. 21. Definite integral
- •Point 1. Problems leading to the concept ofa definite integral
- •Point 2. Definite integral
- •Point 3. Properties of a definite integral
- •I ntegration of inequalities
- •Point 4. Definite integral as a function of its upper variable limit
- •Point 5. Newton-leibniz formula
- •Point 6. Main methods of evaluation a definite integral Change of a variable (substitution method)
- •Integration by parts
- •Lecture no.22. Applications of definite integral
- •Point 1. Problem – solving schemes. Areas
- •Additional remarks about the areas of plane figures
- •Point 2. Arс length
- •Point 3. Volumes
- •Volume of a body with known areas of its parallel cross-sections
- •Volume of a body of rotation
- •Point 4. Economic applications
- •Lecture no. 23. Definite integral: additional questions
- •Point 1. Approximate integration
- •Rectangular Formulas
- •Trapezium Formula
- •Simpson10 formula (parabolic formula)
- •Point 2. Improper integrals
- •Improper integrals of the first kind
- •Improper integrals of the second kind
- •Convergence tests
- •Point 3. Euler г- function
- •Definite integral: Basic Terminology
- •Lecture no. 24. Double integral
- •Point 1. Double integral
- •Point 2. Evaluation of a double integral in cartesian coordinates
- •Point 3. Improper double integrals. Poisson formula
- •Point 4. Double integral in polar coordinates
- •Double integral: Basic Terminology
- •Differential equations lecture no.25. First and second order differential equations
- •Point 1. General notions
- •Point 2. Integrable types of the first order differential equations (of de - 1)
- •1. Separated de-1 (de-1 with separated variables)
- •2. Separable de-1 (de-1 with separable variables)
- •3. Homogeneous de-1
- •4. Linear de-1
- •5. Bernoulli de-1
- •Point 3. Order reducing second order differential equations
- •Lecture no.26. Second order linear differential equations
- •Point 1. General notions
- •Point 2. Linear dependence and independence
- •Point 3. Homogeneous equations Structure of the general solution of so lhde
- •So lhde with constant coefficients
- •Point 4. Nonhomogeneous equations Structure of the general solution of so lnde
- •Method of variation of arbitrary constants
- •Method of undetermined coefficients for so lnde with constant coefficients
- •Lecture no. 27. Systems of differential equations. Approximate integration of differential equations
- •Point 1. Normal systems of differential equations
- •Point 2. Approximate integration of differential equations Successive approximations method
- •Euler method
- •Differential equations: Basic Terminology
- •Bibliography textbooks
- •Problem books
- •Contents
Bibliography textbooks
Bermant A.F., Aramanovich. Mathematical analysis. A brief course for engineering students. – Moscow: Mir Publishers, 1975. - 782 p.
Howard Anton. Calculus. Third edition.
Krasnov M., Kiselev A., Makarenko G., Shikin E. Mathematical analysis for engineers.
Piscunov N. Differential and integral calculus. – Moscow: Mir Publishers, 1969. - 895 p.
Yakovlev G.N. Higher mathematics. – Moscow: Mir Publishers, 1990, - 480 p.
Кремер Н.Ш. и др. Высшая математика для экономистов. Уч. Пособие для вузов.- М.: Банки и биржи, ЮНИТИ, 1997. - 439 с.
Кремер Н.Ш. Математика в экономике. М.: Финстатинформ, 1999.
Общий курс высшей математики для экономистов: Учебник/Под ред. В.И.Ермакова. - М.: ИНФРА, 1999. - 656 с.
Пак В.В., Носенко Ю.Л. Вища математика: Підручник. – Д.: „Видав-ництво Сталкер”, 2003. – 496 с.
Пискунов Н.С. Дифференциальное и интегральное исчисления. Т.1, 2. – М.: Наука, 1978, 456, 576 с..
Шнейдер В.Е., Слуцкий А.И., Шумов А.С. Краткий курс высшей математики. Тт. 1, 2. Учеб. Пособие для втузов. – М.: „Высшая школа”, 1978. – 384, 328 с.
Problem books
Berman G. Problem book on mathematical analysis
Берман Г.Н. Сборник задач по курсу математического анализа
Руководство к решению задач с экономическим содержанием по курсу высшей математики. Под ред. А.И. Карасева и Н.Ш.Кремера. М.: Экономическое образование, 1989.
Сборник задач по высшей математике для экономистов: Учебное пособие / Под ред. В.И. Ермакова. – М.: ИНФРА-М, 2002. – 575 с.
Contents
INTEGRAL CALCULUS 5
LECTURE NO. 19. PRIMITIVE AND INDEFINITE INTEGRAL 5
POINT 1. PRIMITIVE 5
POINT 2. INDEFINITE INTEGRAL AND ITS PROPERTIES 6
POINT 3. INTEGRATION BY SUBSTITUTION (CHANGE OF A VARIABLE) 9
POINT 4. INTEGRATION BY PARTS 13
LECTURE NO.20. CLASSES OF INTEGRABLE FUNCTIONS 17
POINT 1. RATIONAL FUNCTIONS (RATIONAL FRACTIONS) 17
POINT 2. TRIGONOMETRIC FUNCTIONS 20
POINT 3. IRRATIONAL FUNCTIONS 26
INDEFINITE INTEGRAL: Basic Terminology 30
LECTURE NO. 21. DEFINITE INTEGRAL 35
POINT 1. PROBLEMS LEADING TO THE CONCEPT OFA DEFINITE INTEGRAL 35
POINT 2. DEFINITE INTEGRAL 37
POINT 3. PROPERTIES OF A DEFINITE INTEGRAL 39
POINT 4. DEFINITE INTEGRAL AS A FUNCTION OF ITS UPPER VARIABLE LIMIT 42
POINT 5. NEWTON-LEIBNIZ FORMULA 45
POINT 6. MAIN METHODS OF EVALUATION A DEFINITE INTEGRAL 47
Change of a variable (substitution method) 47
Integration by parts 48
LECTURE NO.22. APPLICATIONS OF DEFINITE INTEGRAL 51
POINT 1. PROBLEM – SOLVING SCHEMES. AREAS 51
POINT 2. ARС LENGTH 56
POINT 3. VOLUMES 59
LECTURE NO. 23. DEFINITE INTEGRAL: ADDITIONAL QUESTIONS 64
POINT 1. APPROXIMATE INTEGRATION 64
Rectangular Formulas 64
Trapezium Formula 65
Simpson formula (parabolic formula) 66
POINT 2. IMPROPER INTEGRALS 69
Improper integrals of the first kind 69
Improper integrals of the second kind 72
Convergence tests 75
POINT 3. EULER Г- FUNCTION 77
DEFINITE INTEGRAL: Basic Terminology 79
LECTURE NO. 24. DOUBLE INTEGRAL 85
POINT 1. DOUBLE INTEGRAL 85
POINT 2. EVALUATION OF A DOUBLE INTEGRAL IN CARTESIAN COORDINATES 87
POINT 3. IMPROPER DOUBLE INTEGRALS. POISSON FORMULA 93
POINT 4. DOUBLE INTEGRAL IN POLAR COORDINATES 94
DOUBLE INTEGRAL: Basic Terminology 98
DIFFERENTIAL EQUATIONS 100
LECTURE NO.25. FIRST AND SECOND ORDER DIFFERENTIAL EQUATIONS 100
POINT 1. GENERAL NOTIONS 100
POINT 2. INTEGRABLE TYPES OF THE FIRST ORDER DIFFERENTIAL EQUATIONS (of DE - 1) 103
1. Separated DE-1 (DE-1 with separated variables) 103
2. Separable DE-1 (DE-1 with separable variables) 105
3. Homogeneous DE-1 109
4. Linear DE-1 113
5. Bernoulli DE-1 116
POINT 3. ORDER REDUCING SECOND ORDER DIFFERENTIAL EQUATIONS 117
LECTURE NO.26. SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS 123
POINT 1. GENERAL NOTIONS 123
POINT 2. LINEAR DEPENDENCE AND INDEPENDENCE 124
POINT 3. HOMOGENEOUS EQUATIONS 128
Structure of the general solution of SO LHDE 128
SO LHDE with constant coefficients 129
POINT 4. NONHOMOGENEOUS EQUATIONS 131
Structure of the general solution of SO LNDE 131
Method of variation of arbitrary constants 132
Method of undetermined coefficients for SO LNDE with constant coefficients 135
LECTURE NO. 27. SYSTEMS OF DIFFERENTIAL EQUATIONS. APPROXIMATE INTEGRATION OF DIFFERENTIAL EQUATIONS 142
POINT 1. NORMAL SYSTEMS OF DIFFERENTIAL EQUATIONS 142
POINT 2. APPROXIMATE INTEGRATION OF DIFFERENTIAL EQUATIONS 145
Successive approximations method 145
Euler method 147
DIFFERENTIAL EQUATIONS: Basic Terminology 150
BIBLIOGRAPHY 158
CONTENTS 159
Integral calculus. Differential equations (Інтеґральне числення. Диференціальні рівняння): Методичний посібник по вивченню розділів курсу ”Математичний аналіз” для студентів ДонНТУ (англійською мовою)
УКЛАДАЧ: Косолапов Юрій Федорович, кандидат фізико-математич-них наук, професор
ФОРМАТ
60×84
.
Умовних друкарських аркушів
83000, м. Донецьк, вул. Артема, 58, ДонНТУ
1 Cauchy, A.L. (1780 - 1859), an eminent French mathematician
2 Riemann G.F.B. (1826 - 1866), an eminent German mathematician
3 Bolzano, B. (1781 - 1848), a Czech mathematician, philosopher, and logician
4 Newton, I. (1642 - 1727), the great English scientist
5 Leibniz, G. (1646 – 1717), the great German philosopher and mathematician
6 See Lect. No. 8, Point 4, Ex. 12
7 See Lecture NO. 4, Point 2, Ex. 4
8 Ib., Ex. 5
9
That is
or
.
10 Simpson, T. (1710 - 1761), an English mathematician
11 Agnesi, M.G. (1718 - 1799), an Italian mathematician
