
- •Розділ 8. Диференціальні рівняння
- •1. Економічні задачі, що приводять до диференціальних рівнянь. Основні означення
- •2. Диференціальні рівняння першого порядку
- •Диференціальні рівняння першого порядку з подільними змінними.
- •Однорідні диференціальні рівняння першого порядку.
- •Лінійні диференціальні рівняння першого порядку.
- •Рівняння Бернуллі.
- •Рівняння в повних диференціалах.
- •3. Диференціальні рівняння другого порядку
- •Деякі диференціальні рівняння другого порядку, що допускають зниження порядку.
- •Лінійні однорідні диференціальні рівняння другого порядку. Загальні властивості.
- •4. Лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами
- •5. Лінійні неоднорідні диференціальні рівняння другого порядку. Метод варіації довільних сталих
- •6. Лінійні неоднорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами
- •7. Системи диференціальних рівнянь
- •Системи лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами.
- •8. Задачі економічної динаміки
- •Відповіді до вправ Розділ 1
- •Розділ 2
- •Розділ 3
- •Розділ 4
- •Розділ 5
- •Розділ 6
- •Розділ 7
- •Розділ 8
- •Список літератури
- •Математичний аналіз для економістів
3. Диференціальні рівняння другого порядку
Диференціальним рівнянням другого порядку називається рівняння, що зв'язує незалежну змінну , шукану функцію і її похідні першого та другого порядку
.
(8.14)
У деяких випадках рівняння вдається розв’язати відносно другої похідної, тобто записати у вигляді
.
(8.15)
Також, як і диференціальні рівняння першого порядку, диференціальні рівняння другого порядку мають нескінченну множину розв'язків, кожний з яких зображується на площині деякою кривою.
Якщо час
розглядати як незалежну змінну, а шукану
функцію
як шлях, пройдений матеріальною точкою
за час
при прямолінійному рухові, то диференціальне
рівняння виражає в кожен момент часу
залежність між пройденим шляхом
,
швидкістю
і прискоренням
точки, що рухається
.
Розв’язати таке
рівняння, означає визначити закон руху
,
що дозволяє в будь-який момент часу,
визначити положення точки, що рухається.
Для того, щоб з множини розв'язків вибрати потрібний, у механіці звичайно задають початкове положення точки, і початкову швидкість.
Говорять, що
розв'язок
рівняння задовольняє початковим умовам,
якщо
,
.
Геометрично це
означає, що відповідна крива рівняння
проходить через точку
площини і має в цій точці дотичну з
кутовим коефіцієнтом
.
Знаходження розв'язку рівнянь (8.14) чи (8.15), який задовольняє заданим початковим умовам називається задачею Коші для цих рівнянь.
Достатні умови існування й єдиності розв'язку задачі Коші для рівняння, розв’язаного відносно похідної, задаються теоремою, сформульованою за аналогією теореми Коші для рівняння першого порядку.
Теорема
Коші.
Якщо функція
неперервна в деякій області тривимірного
простору, має неперервні частинні
похідні, то яка б не була точка
цієї області, існує, і притому єдиний
розв'язок
рівняння
,
визначений у деякому інтервалі, що
містить точку
та задовольняє початковим умовам
,
.
Єдиність розв'язку задачі Коші для рівняння другого порядку не означає, що через дану точку площини проходить тільки одна інтегральна крива , як це спостерігалося для рівняння першого порядку, розв’язаного відносно похідної.
Для рівняння другого порядку з початковими умовами єдиність задачі Коші потрібно розуміти як те, що через точку площини проходить єдина крива рівняння, дотична до якої в цій точці має кутовий коефіцієнт . Через ту ж точку проходить ще нескінченна множина кривих рівняння з іншим нахилом дотичної у цій точці.
Загальний розв'язок диференціального рівняння другого порядку містить у собі дві довільні сталі і має вигляд
.
(8.16)
Розв'язки, що одержані із загального при конкретних значеннях довільних сталих називаються частинними розв'язками даного рівняння.
Неявно задані загальний чи частинний розв'язки рівняння називаються його загальним і частинним інтегралами.
Для виділення з загального розв'язку частинного, що задовольняє заданим початковим умовам , , потрібно розв’язати систему рівнянь
(8.17)
відносно сталих і підставити їх значення в загальний розв'язок рівняння.