
- •2.8 Превращения чугунов…………………………………………...…… 34
- •1.1 Введение
- •1.2 Структура курса
- •1.3 Типы химических связей в веществе
- •1.4 Методы измерения твердости металлов
- •1.4.1 Измерение твердости по Бринеллю
- •1.4.2 Измерение твердости по Виккерсу
- •1 Рисунок 1.8 - Положение наконечника при определении твердости по Роквеллу, 1-3 этапы воздействия .4.3. Измерение твердости по Роквеллу
- •1.5 Кристаллизация веществ
- •1.5.1 Общие понятия о кристаллической решетке и ее дефектах
- •1.5.2 Дальний порядок и ближний порядок в веществе
- •1.5.3 Дефекты кристаллической решетки
- •1.5.4 Кристаллизация жидкостей и макроструктура слитка
- •1.5.5 Гомогенное зарождение кристаллов
- •1.5.6 Гетерогенное зарождение кристаллов
- •1.5.7 Необходимость управления процессом кристаллизации
- •1. Ковалентной связью называется:
- •2.2 Общие понятия о металлических сплавах
- •2.3 Диаграммы состояния двухкомпонентных сплавов
- •2.5 Структура и физические свойства сплавов железо-углерод
- •2.6 Процессы при структурообразовании железоуглеродистых сплавов
- •2.7 Превращения сталей в твердом состоянии
- •2.8 Превращения чугунов
- •1. Металлы – это…
- •2. В каком состоянии компоненты сплавов хорошо растворяются друг в друге
- •3. Сплавы механические смеси образуются
- •3.2 Превращения в стали при нагреве
- •3.2.2 Превращения в стали при охлаждении
- •3.2.2 Мартенситное превращение
- •3.2.3 Промежуточное (бейнитное) превращение аустенита
- •3.3 Отжиг стали
- •3.4 Закалка стали
- •3.4.1 Охлаждение при закалке стали
- •3.4.2 Режимы закалки стали
- •3.5 Отпуск стали
- •3.6 Отпускная хрупкость
- •3.7 Химико-термическая обработка стали
- •3.7.1 Цементация
- •3.7.2 Цементация в твердом карбюризаторе
- •3.7.3 Газовая цементация
- •3.7.4 Азотирование
- •3.7.4 Цианирование
- •3.7.5 Диффузионная металлизация
- •1. Под термической обработкой понимают процессы
- •4.2 Влияние примесей на свойства стали
- •4.2.1 Постоянные примеси
- •4.2.2 Легирующие примеси
- •4.3 Классификация железоуглеродистых сталей
- •4.3.1. Кипящая сталь
- •4.3.2 Спокойная сталь
- •4.3.3 Полуспокойная сталь
- •4.4 Маркировка, свойства, термическая обработка и область применения углеродистых сталей
- •4.4.1 Углеродистые конструкционные стали
- •4.4.2 Автоматные стали
- •4.4.3 Конструкционные низколегированные стали
- •4.4.4 Конструкционные цементуемые стали
- •4.4.5 Конструкционные улучшаемые стали
- •4.4.6 Рессорно-пружинные стали
- •4.4.7 Шарикоподшипниковые стали
- •4.4.8 Износостойкие стали
- •4.4.9 Стали и сплавы с особыми свойствами
- •4.5 Инструментальные стали и сплавы
- •4.5.1 Общая характеристика
- •4.5.2 Углеродистые инструментальные стали (гост 1435).
- •4.5.3 Легированные инструментальные стали
- •4.5.4 Быстрорежущие стали
- •4.5.5 Стали для измерительных инструментов
- •4.5.6 Штамповые стали
- •4.5.7 Твердые сплавы
- •4.6 Чугуны
- •4.6.1 Классификация чугунов
- •4.6.2 Влияние состава чугуна на процесс графитизации
- •4.6.3 Влияние графита на механические свойства отливок
- •4.6.4 Серый чугун
- •4.6.5 Высокопрочный чугун с шаровидным графитом
- •4.6.6 Ковкий чугун
- •4.6.7 Отбеленные и другие чугуны
- •5.2 Алюминий и его сплавы
- •5.3 Классификация алюминиевых сплавов
- •5.3.1 Деформируемые алюминиевые сплавы
- •5.3.1.1 Маркировка деформируемых сплавов
- •5.3.2 Термически неупрочняемые коррозионностойкие и свариваемые сплавы
- •5.3.2.1 Сплавы системы Al—Mn
- •5.3.2.2 Сплавы системы Al—Mg (магналии)
- •5.3.3 Сплавы повышенной пластичности и ковочные
- •5.3.3.1 Коррозионностойкие сплавы повышенной пластичности системы Al—Mg—Si (авиали)
- •5.3.3.2 Ковочные сплавы системы Al—Cu—Mg—Si (дюралюмины)
- •5.3.3.3 Сплавы системы Al-Si (силумины)
- •5.4 Медь и ее сплавы
- •5.4.1 Латуни
- •5.4.2 Бронзы
- •5.4.2.1 Оловянистые бронзы
- •5.4.2.2 Свинцовые бронзы
- •5.5 Титан и его сплавы
- •5.6 Магний
- •5.7 Бериллий
- •6.2 Полиэтилен
- •6.3 Поливинилхлорид
- •6.4 Фторопласт
- •6.5. Полистирол и пластики абс
- •6.6 Полипропилен
- •6.7 Поливинилацетат
- •6.8 Фенолоформальдегидные смолы
- •6.9 Кремнийорганические полимеры
- •6.10 Эпоксиполимеры
- •6.11 Полиуретан
- •6.12 Полиамиды
- •6.13 Пластмассы
- •7.1.1 Структура композиционных материалов
- •7.1.2 Полимерные композиционные материалы (пкм)
- •7.1.3 Композиционные материалы с металлической матрицей
- •7.1.4 Композиционные материалы на основе керамики
- •1. Композиционные материалы
- •Вайнгард, у. Введение в физику кристаллизации металлов [Текст] / у. Вайнгард. - м. : Мир, 1967. – 170 с.
- •Учебное пособие по курсу «Материаловедение. Технология конструкционных материалов»
4.3.1. Кипящая сталь
Кипящая сталь в печи или ковше раскисляется не полностью и только марганцем. Далее она поступает в изложницу бурлящей от выделения оксида углерода. Чтобы закрыть выход газам, в изложницу в определенный момент вставляют чугунную крышку. В результате быстрого охлаждения под крышкой образуется твердая корка стали. Выделяющийся оксид углерода частично остается внутри слитка в виде рассеянных газовых раковин, компенсирующих усадку, поэтому в слитке нет сосредоточенной усадочной раковины.
Газовые раковины (пузыри) завариваются при прокатке, и почти весь слиток идет в дело. Содержание углерода в кипящей стали не более 0,3 %; большее его содержание вызывает чрезмерное выделение газов и увеличение брака стали. Кипение в изложнице со свободным выходом газов (до образования корки) способствует более полному удалению из слитка неметаллических включений, поэтому пластичность кипящей стали выше, чем спокойной.
Кипящая сталь хорошо штампуется, поэтому ее применяют для деталей глубокой вытяжки, а также сварных труб и других изделий. Она дешевле спокойной стали,- но слитки получаются неоднородными по составу (вследствие ликвации внутренние слои слитка содержат больше, чем наружние, углерода и примесей); это ограничивает ее применение.
4.3.2 Спокойная сталь
Спокойная сталь полностью раскислена в печи или в ковше марганцем, кремнием и алюминием и в изложнице затвердевает спокойно. При соприкосновении стали со стенками изложницы образуются мелкие зерна. Далее скорость затвердевания уменьшается и кристаллы растут, ориентируясь по направлению от отвода тепла к середине слитка, в результате чего образуется зона слитка, представляющая ориентированные столбчатые кристаллы.
Внутреннюю часть слитка, затвердевающую медленно, составляют неориентированные (вследствие отвода тепла в разных направлениях) кристаллы. Получается плотный слиток с усадочной раковиной в верхней части. Часть слитка, где расположена усадочная раковина, называют прибыльной частью (прибылью). При дальнейшей обработке (прокаткой, ковкой) прибыль отрезают.
Чтобы уменьшить усадочную раковину, применяют изложницы с прибыльной надставкой, имеющей малотеплопроводную огнеупорную футеровку. Благодаря этому, сталь в надставке продолжительное время остается жидкой и питает затвердевающий слиток, уменьшая в нем усадочную раковину.
Для этой же цели применяют обогрев прибыльных частей слитков электрическими дугами, индукционными токами, термитными смесями, газовыми горелками и другими способами. Помимо приведенного кристаллического строения для слитков характерна неоднородность состава вследствие зональной ликвации, внутрикристаллической ликвации и ликвации по плотности. Зональная ликвация связана с разностью температуры затвердевания внутренней и верхней части слитка. Это происходит вследствие непрерывного изменения (в процессе кристаллизации) состава жидкого металла. В стальных слитках наибольшую зональную ликвацию вызывает сера, несколько меньшую — фосфор и углерод.
4.3.3 Полуспокойная сталь
Полуспокойная сталь по реакциям в изложнице и однородности является промежуточной между спокойной и кипящей. Ее раскисление в печи или ковше производят повышенным (против кипящей стали) количеством марганца, или марганцем и кремнием (иногда также и алюминием). Преимуществами полуспокойной стали по сравнению со спокойной является больший выход годного продукта, а по сравнению с кипящей — большая однородность благодаря меньшей ликвации.