Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекций по мат програм.doc
Скачиваний:
16
Добавлен:
15.08.2019
Размер:
1.63 Mб
Скачать

1.Решение систем линейных уравнений методом гаусса – жордана

1.1. Основные понятия

Система m линейных уравнений с n неизвестными имеет следующий вид:

Здесь хj ( j=1, n ) – переменные ( или неизвестные) системы, аij ( i =1,m; j = 1,n ) – коэффициенты при переменных, вi ( i =1,m ) – свободные члены.

Решением системы ( І.І) называется всякий набор значений переменных х1, х2, …, хn, при котором все уравнения превращаются в тождества. Система называется совместной, если она имеет хотя бы одно решение, и несовместной – в противном случае.

Например, система

совместна, так как она имеет, в частности, такое решение:

х1 = 1; х2 = 2; х3 = 0 . Система же

несовместна.

Две системы линейных уравнений называются равносильными, если каждое решение одной из них является решением другой, и наоборот. Если какое-либо уравнение системы умножить на постоянный множитель λ 0 , то получится система уравнений, равносильная исходной. Аналогично, если к какому-либо уравнению системы прибавить другое уравнение системы, то получится система, равносильная исходной.

Наконец если, в системе есть уравнение вида

0∙х1 + 0∙х2 + ... + 0∙ хn = 0, то такое уравнение можно убрать, получив систему, равносильную исходной.

1.2. Приведение системы линейных уравнений к жордановой форме

Процесс отыскания решения системы линейных уравнений начинается с того, что система приводится к жордановой форме.

Определение. Жордановой формой системы (I.I) называется систе­ма линейных уравнений, обладающая следующими свойствами:

а) она равносильна системе (I.I)

б) в каждом уравнении жордановой формы есть такая переменная, которая входит в это уравнение с коэффициентом 1, а в остальные уравнения - с коэффициентом 0.

Так, если системе (I.I) равносильна следующая система линейных уравнений:

(1.2)

то (І.2) есть жорданова форма для (I.I). При этом переменные х1, х2,... ,хк называются базисными, остальные переменные хк+1,..., хn называются свободными. Жорданова форма всегда является совместной системой линейных уравнений. Действительно, система (І.2) имеет следующее решение:

(І.3)

Так как система (І.2) равносильна системе ( І.І ) , то (І.3) является решением системы (І.І).

Таким образом, если для системы линейных уравнений ( І.І ) существует жорданова форма, то ( І.І ) – совместная система. Несовместная система жордановой формы не имеет.

Покажем, что любую совместную систему можно привести к жордановой форме. Это достигается методом Гаусса-Жордана, который состоит в следующем.

Рассмотрим первое уравнение системы (І.І). Выберем в нем переменную, коэффициент при которой отличен от нуля. Предположим, что а11 0. Поделим уравнение на а11.

Получим уравнение

х1+ а12х2 + … + а1nхn = в1 (І.4)

Будем переменную х1 делать базисной в жордановой форме. Для этого ее нужно исключить из остальных уравнений системы. Чтобы исключить х1 из второго уравнения, умножим уравнение (І.4) на -а21 и сложим со вторым уравнением. Затем исключим х1 из третьего уравнения, для чего уравнение (І.4) умножим на –а31 и сложим с третьим уравнением. Аналогично переменная х1 исключается из остальных уравнений. Таким образом, взяв в качестве "ведущего" первое уравнение и проведя серию "жордановых исключений", мы получим равносильную (I.I) систему уравнений, в которой x1 входит в первое уравнение с коэффициентом 1 , а в остальные уравнения - с коэффициентом 0.

После этого выбираем в качестве ведущего второе уравнение полученной системы. В этом уравнении берем коэффициент, отличный от нуля (пусть это коэффициент при х2), делим уравнение на этот коэффициент и затем исключаем х2 из всех остальных уравнений (в том числе и из первого). Затем в качестве ведущего выбираем третье уравнение и т.д.

Если на некотором шаге возникнет уравнение вида

0∙х1 + 0∙х2 + ... + 0∙ хn = 0 (І.5)

то удаляем его из системы. Если же возникнет уравнение вида

0∙х1 + 0∙х2 + ... + 0∙ хn = b ≠ 0, то это свидетельствует о несовместности исходной системы ( І.І), а несовместная система к жордановой форме не приводится.

Таким образом, метод Гаусса-Жордана совместную систему линейных уравнений приводит к жордановой форме, а в случае несовместности системы обнаруживает несовместность.

Ясно, что в жордановой форме число уравнений не может быть больше числа уравнений в исходной системе. Так, если система (1.2) является жордановой формой для системы (I.I), то , причем строгое неравенство имеет место тогда, когда на некоторых шагах жордановой процедуры удалялись уравнения вида (1.5).

Очевидно, одна и та же система может иметь много различных жордановых форм.

Пример. Привести к жордановой форме

Выберем в качестве ведущего первое уравнение, а в качестве базисной переменной - переменную х1. Поделим первое уравнение на (-1) (коэффициент при х1), получим:

Умножим это уравнение на (+5) и прибавим ко второму уравнению, затем умножим его на (-3) и прибавим к третьему уравнению.

Получим систему:

Теперь сделаем ведущим второе уравнение, а базисной переменной - переменную . Поделив второе уравнение на (-8) и исключив из первого и третьего уравнений, получим систему:

Наконец, в третьем уравнении выбираем в качестве базисной переменную . Поделим это уравнение на (-1) и исключим из остальных уравнений. Получим жорданову форму:

Переменные являются базисными, переменная - свободной.