Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Physics of strongly coupled plasma (2006).pdf
Скачиваний:
93
Добавлен:
01.05.2014
Размер:
5.58 Mб
Скачать

IONIZATION BY PRESSURE

365

ρ/ρ293

 

 

60

100

 

210 GPa

20

77 K

60 GPa

1290

 

 

77

100

 

 

 

 

 

1280

 

 

 

77

60

 

 

 

 

1250

2168

 

293

60

15

586

2556

 

2783

293

160

 

 

577

2066

 

 

293

212

 

2217

 

1180

955

 

10

 

 

952

1822

 

 

 

 

945

 

 

 

 

870

561

 

 

 

 

 

863

 

 

 

5

 

921

 

 

 

595

430

s = const

 

2833

 

 

 

 

293

423

 

 

 

 

 

0

 

 

 

 

 

 

0.4

0.8

 

1.2

1.6

2.0

ρ, g cm-3

Fig. 9.21. Resistivity of lithium versus density (Fortov et al. 2001). The legend of points includes the initial temperature and the maximum pressure, and numbers near the points show the calculated temperature.

tion of sodium into the dielectric state was reported by Fortov et al. (2001). The dramatic changes in the atomic and electron structure of lithium and

sodium obtained in the quantum mechanical calculations by Neaton and Ashcroft (1999, 2001) indicate strong electron–phonon interaction. This suggests the possibility of superconductivity at relatively high temperatures (Christensen and Novikov 2001).

The transition to the dielectric state is predicted not only for the alkali metals. Self–consistent augmented–plane–wave calculations by McMahan and Albers (1982) predict that nickel should transform from a metal to an insulator at a pressure of 34 TPa, and then revert back to a metal at 51 TPa. This prediction still requires experimental confirmation.

9.4Ionization by pressure

The e ect of pressure–induced ionization is most pronounced in the case of hydrogen. Figure 9.5 shows the data on the quasi–isentropic compression of liquid and gaseous hydrogen in planar 1 and cylindrical 2 geometries (Fortov et al. 2003) together with the results of the compression in the light–gas gun 5 (Weir et al. 1996a) and the results of explosive cylindrical compression in an axial magnetic field 3 (Hawke et al. 1978) and 4 (Pavlovskii et al. 1987). Because of the small molecular weight, the multiple shock compression of hydrogen is accompanied by relatively weak heating – even at maximum pressures of 0.1–1 TPa, the typical values of the temperature do not exceed T = 104 K, which favors the regime of

366

METALLIZATION OF NONIDEAL PLASMAS

“cold” ionization. For hydrogen compressed to densities of ρ 0.01–1.2 g cm3 and heated to T 104 K at pressures below 1.5 TPa, a wide spectrum of plasma states was realized, characterized by a fully developed ionization, α 1, and a high electron concentration, ne 2 · 1023 cm3. At maximum compressions, the plasma is degenerate, neλ3e < 200, and is strongly nonideal both with respect to Coulomb (γ 10) and to interatomic (nara3 1) interactions.

It is interesting that the extrapolation of the simplest plasma models to this region of strong nonideality leads to the thermodynamic instability of Debye– H¨uckel models (the “Coulomb collapse” indicated by the arrow DP in Fig. 9.5) and to the divergence of the Spitzer formula (arrow SP). The first of these approximations is depicted by the DHA curve in Fig. 9.5 and predicts the “pressure– induced ionization” at densities approximately two orders of magnitude lower than the experimental values. The shock compression leads to the overlap of the wavefunctions for neighboring atoms and, hence, to the percolation conductivity mechanism suggested by Likal’ter (1998, 2000), which is described in terms of the density–dependent reduction of the ionization potential (see the discussion of the percolation model in Chapter 4).

A decrease in the ionization potential with density is also predicted by the Mott model (Mott and Davis 1979), which was used by Ebeling et al. (1991) to construct a semiempirical broad–range model of ionization equilibrium and transport properties (curve M in Fig. 9.5) of compressed and hot matter,

 

 

 

∆(I)

 

 

I =

 

I ln 1 + exp

 

2

R − a(I)

.

(9.5)

 

 

 

The parameters a, R and ∆ were chosen to reproduce experimental data on pressure–induced ionization of alkali metals. One can see that the proposed approximations provide a good qualitative description of experimental results.

By using the ring (Debye) approximation in a big canonical ensemble of statistical mechanics (curve LDH) to describe Coulomb nonideality, one can reduce the discrepancy between the theoretical and experimental results down to one order of magnitude. The remaining disagreement can be eliminated by introducing the hard–sphere model to describe the short–range repulsion of atoms and ions (curve HS) and by taking into account the compression–induced change in the energy spectrum of atoms and ions within a simplified model discussed in Section 9.3 (curve CA). An attempt to take into account the “hopping” character of the electrical conductivity in nonideal plasmas was made by Redmer et al. (2001). The corresponding results are marked by the symbol “R” in Fig. 9.5. The QMC curve corresponds to the calculation of the conductivity by the quantum MC method (Filinov et al. 2000a,b, 2001; Mulenko et al. 2001).

Figures 9.6–9.9 display the results of the electrical conductivity of shock– compressed Xe, Ar, Kr, and He. Similar to the case of hydrogen, at “low” temperatures one can clearly see the e ect of the pressure–induced ionization occurring at higher plasma densities 1–10 g cm3. For multielectron atoms it is also

REFERENCES

367

natural to expect that, as compression is increased further, the first pressure– induced ionization will be followed by the next stages of multiple ionization. These stages should be accompanied by the emergence of new boundaries in the phase diagram. Unfortunately, experimental investigation of the regimes of multiple ionization is beyond the currently available capabilities of the explosive experimental equipment.

Along with the results of multiple (“cold”) compression, the same figures show data obtained previously (Ivanov et al. 1976; Mintsev and Fortov 1979; Mintsev et al. 1980) by measuring the electrical conductivity of singly and doubly compressed plasmas. The temperature in this case is almost one order of magnitude higher, so that the e ect of thermal ionization becomes dominant. The e ect increases with increasing molecular weight of the studied substance and is particularly clear for xenon (see Fig. 9.6). It can be seen that upon thermal ionization at T (4–10)·103 K, a high level of the electrical conductivity of 103 ohm1cm1 is achieved even at low densities of ρ 0.04–1 g cm3, whereas the pressure–induced ionization can provide the same conductivity in cold (T 104 K) matter only at extremely high densities of ρ 10 g cm3. It can also be seen that, with increasing molecular weight of substances, the relative jump in the conductivity due to pressure–induced ionization decreases and becomes as low as two orders of magnitude for xenon. It is noteworthy that the electrical conductivity of xenon plasma measured in experiments with multiple shock compression is close to that obtained under static compression in diamond anvils (crosses in Fig. 9.6).

It is important to note that some of the models discussed here lose thermodynamic stability in the parameter regime achieved in the experiments. This might be considered as an indication of a “plasma” first–order phase transition (see Chapter 5) leading to the stratification of a strongly nonideal plasma into phases characterized by di erent degrees of ionization and compressibility. A sharp increase in the electrical conductivity of a dense plasma might suggest the occurrence of such a phase transition.

References

Abrikosov, A. A. Equation of state of hydrogen and high pressures. (1954).

Astron. Zh., 31,112.

Adamskaya, I. A., Grigor’ev, F. V., Mikhailova, O. L., Mochalov, M. A., Sokolova, A. I., and Urlin, V. D. (1987). Quasi–isentropic compression of liquid argon at pressures up to 600 kbar. JETP, 66, 366–368.

Alekseev, V. A. and Vedenov, A. A. (1971). Conductivity of dense cesium vapor.

Sov. Phys. Uspekhi, 13, 830–831.

Ashcroft, N. W. (1968). Metallic hydrogen: A high–temperature superconductor? Phys. Rev. Lett., 21, 1748–1749.

Avrorin, E. N., Vodolaga, B. K., Simonenko, B. A., and Fortov, V. E. (1993). Intense shock waves and extreme states of matter. Phys. Uspekhi, 36, 337–364.

368 METALLIZATION OF NONIDEAL PLASMAS

Bakanova, A. A., Zubarev, V. N., Sutulov, Y. N., and Trunin, R. F. (1975). Thermodynamic properties of water at high pressures and temperatures. JETP, 41, 544–548.

Barker, L. M., Trucano, T. G., Wize, J. L., and Asay, J. R. (1986). (private communication).

Bastea, M., Mitchell, A. C., and Nellis, W. J. (2001). High pressure insulator– metal transition in molecular fluid oxygen. Phys. Rev. Lett., 86, 3108–3111.

Belov, S. B., Boriskov, G. V., Bykov, A. I., Il’kaev, R. I., Luk’yanov, N. B., Matveev, A. Y., Mikhailova, O. L., Selemir, V. D., Simakov, G. V., Trunin, R. F., Trusov, I. P., Urlin, V. D., Fortov, V. E., and Shuikin, A. N. (2002). Shock compression of solid deuterium JETP Lett., 76, 433–435.

Berg, U. I. Investigations of a very high pressure transducer. (1964). Arkiv for Fysik, 25, 111–122.

Berger, J., Joigneau, S., and Bottet, G. (1960). Behaviour of sulphur under the action of a shock wave. CR Acad. Sci. (Paris), 250, 4331–4333.

Beule, D., Ebeling, W., Forster, A., Juranek, H., Nagel, S., Redmer, R., and R¨opke, G. (1999). Equation of state for hydrogen below 10000 K: From the fluid to the plasma. Phys. Rev. B, 59, 14177–14181.

Boettger, J. C. (1986). Equation of state and metallization of neon. Phys. Rev. B, 33, 6788–6791.

Brish, A. A., Tarasov, M. S., and Tsukerman, V. A. (1960). Electrical conductivity of dielectrics in strong shock waves. JETP, 11, 15–17.

Brovman, E. G., Kagan, Y., and Kholas, A. (1971). Structure of metallic hydrogen at zero pressure. JETP, 34, 1300–1315.

Bushman, A. B., Lomonosov, I. V., and Fortov, V. E. (1992). Equations of state of metals at high energy densities. Joint Institute of Chemical Physics, Chernogolovka.

Cavazzoni, C., Chiarotti, G. L., Scandolo, S., Tosatti, E., Bernasconi, M., and Parrinello, M. (1999). Superionic and metallic states of water and ammonia at giant planet conditions. Science, 283, 44–46.

Chhabildas, L. C. and Ruo , A. L. (1977). The transition of sulfur to a conducting phase. J. Chem. Phys., 66, 983–985.

Christensen, N. E. and Novikov, D. L. (2001). Predicted superconductive properties of lithium under pressure. Phys. Rev. Lett., 86, 1861–1864.

Collins, L. A., Kwon, I., Kress, J. D., Troullier, N., and Lynch, D. (1995). Quantum molecular dynamics simulations of hot, dense hydrogen. Phys. Rev. E, 52, 6202–6219.

Da Silva, L. B., Celliers, P., Collins, G. W., Budil, K. S., Holmes, N. C., Barbee Jr., T. W., Hammel, B. A., Kilkenny, J. D., Wallace, R. J., Ross, M., and Cauble, R. (1997). Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa (2 Mbar). Phys. Rev. Lett., 78, 483–486.

David, H. G. and Hamann, S. D. (1958). Sulfur: A possible metallic form. J. Chem. Phys., 28, 1006.

David, H. G. and Hamann, S. D. (1959). The chemical e ects of pressure. Part

REFERENCES

369

5.–The electrical conductivity of water at high shock pressures. Trans. Faraday Soc., 55, 72–78.

David, H. G. and Hamann, S. D. (1960). The chemical e ects of pressure. Part 6.–The electrical conductivity of several liquids at high shock pressures. Trans. Faraday Soc., 56, 1043–1050.

Desgreniers, S., Vohra, Y. K., and Ruo , A. L. (1990). Optical response of very high density solid oxygen to 132 GPa. J. Phys. Chem., 94, 1117–1122.

DeSilva, A. W. and Katsouros, J. D. (1998). Electrical conductivity of dense copper and aluminum plasmas. Phys. Rev. Lett., 57, 5945–5951.

Dolotenko, M. I., Bykov, A. I., et al. (1997). (private communication).

Dudin, S. V., Fortov, V. E., Gryaznov, V. K., Mintsev, V. B., Shilkin, N. S., and Ushnurtsev, A. E. (1998). Investigation of shock–compressed plasma parameters by interaction with magnetic field. In Shock compression of condensed matter. 1999, Schmidt, S. C. (ed.), pp. 793–795. AIP Conference Proceedings 429, New York.

Dunn, K. J. and Bundy, F. P. (1977). Electrical behavior of sulfur up to 600 kbar–metallic state. J. Chem. Phys., 67 5048–5053.

Ebeling, W., F¨orster, A., Fortov, V., Gryaznov, V., and Polishchuk, A. (1991).

Thermophysical properties of hot dense plasmas. Teubner, Stuttgart–Leipzig. Eremets, M. I., Gregoryanz, E. A., Struzhkin, V. V., Mao, H., Hemley, R. J., Mulders, N., and Zimmerman, N. M. (2000). Electrical conductivity of xenon

at megabar pressures. Phys. Rev. Lett., 85, 2797–2800.

Evdokimova, V. V. and Kuzemskaya, I. G. (1978). Superconductivity of sulfur at high pressure. JETP Lett., 28, 360–362.

Filinov, V. S., Bonitz, M., Ebeling, W., and Fortov, V. E. (2001). Thermodynamics of hot dense H–plasmas: Path integral Monte Carlo simulations and analytical approximations. Plasma. Phys. Control. Fusion, 43, 743–759.

Filinov, V. S., Bonitz, M., and Fortov, V. E. (2000a). High–density phenomena in hydrogen plasma. JETP Lett., 72, 361–365.

Filinov, V. S., Fortov, V. E., Bonitz, M., and Kremp, D. (2000b). Pair distribution functions of dense partially ionized hydrogen. Phys. Lett. A, 274, 228–235.

Fortov, V. E. (Ed.) (2000). Encyclopedia of low temperature plasmas. Introductory volume 1. Nauka, Moscow.

Fortov, V. E., Gryaznov, V. K., Mintsev, V. B., Ternovoi, V. Y., Iosilevski, I. L., Zhernokletov, M. V., and Mochalov, M. A. (2001). Thermophysical properties of shock–compressed argon and xenon. Contrib. Plasma Phys., 41, 215–218.

Fortov, V. E., Ternovoi, V. Y., Mintsev, V. B., Nikolaev, D. N., Pyalling, A. A., and Filimonov, A. S. (1999a). Electrical conductivity of nonideal hydrogen plasma at megabar dynamic pressures. JETP Lett., 69, 926–931.

Fortov, V. E., Ternovoi, V. Y., Zhernokletov, M. V., Mochalov, M. A., Mikhailov, A. L., Filimonov, A. S., Pyalling, A. A., Mintsev, V.B., Gryaznov, V. K., and Iosilevski, I. L. (2003). Pressure–produced ionization of nonideal plasma in a megabar range of dynamic pressures. JETP, 97, 259–278.

370 METALLIZATION OF NONIDEAL PLASMAS

Fortov, V. E., Yakushev, V. V., and Kagan, K. L., Lomonosov, I. V., Postnov, V. I., and Yakusheva, T. I. (1999b). Anomalous electrical conductivity of lithium under quasi–isentropic compression to 60 GPa (0.6 Mbar). Transition into a molecular phase? JETP Lett., 70, 628–632.

Fortov, V. E., Yakushev, V. V., Kagan, K. L., Lomonosov, I. V., Postnov, V. I., Yakusheva, T. I., and Kur’yanchik, A. N. (2001). Anomalous resistivity of lithium at high dynamic pressures. JETP Lett., 74, 418–421.

Gatilov, L. A., Glukhodedov, V. D., Grigor’ev, F. V., Kormer, S. B., Kuleshova, L. V., and Mochalov, M. A. (1985). Electric conductivity shock–compressed condensed argon at pressure from 20 to 70 GPa. J. Appl. Mech. Techn. Phys., 26, 99–102.

Gaydon, A. G. and Hurle, I. R. (1963). The shock tube in high temperature chemical physics. Chapman and Hall, London.

Glukhodedov, V. D., Kirshanov, S. I., Lebedeva, T. S., and Mochalov, M. A. (1999). Properties of shock–compressed liquid krypton at pressures of up to 90 GPa. JETP, 89, 292–298.

Goettel, K. A.,Eggert, J. H., Silvera, I. F., and Moss, W. C. (1989). Optical evidence for the metallization of Xe at 132(5) GPa. Phys. Rev. Lett., 62, 665– 668.

Grigor’ev, F. V., Kormer, S. B., Mikhailova, O. L., Mochalov, M. A., and Urlin, V. D. (1985). Shock compression and brightness temperature of a shock wave front in argon. JETP, 61, 751–757.

Grigor’ev, F. V., Kormer, S. B., Mikhailova, O. L., Tolochhko, A. P., and Urlin, V. D. (1978). Equation of state of molecular yydrogen. Phase transition into the metallic state. JETP, 48, 847–852.

Gryaznov, V. K. and Fortov, V. E. (1987). Thermodynamics of aluminum plasma at ultrahigh energy densities. High Temp., 25, 1208–1210.

Gryaznov, V. K., Fortov, V. E., Zhernokletov, M. V., Simakov, G. V., Trunin, R. F., Trusov, L. I., and Iosilevskii, I. L. (1998). Shock–wave compression of nonideal plasma of metals. JETP, 87, 678–690.

Gryaznov, V. K., Iosilevskii, I. L., and Fortov, V. E. (1982). Thermodynamics of strongly compressed plasma of the megabar pressure range. JTP Lett., 8, 1378–1381.

Gryaznov, V. K., Iosilevskii, I. L., and Fortov, V. E. (2000). Thermodynamics of shock–compressed plasma in conception of chemical model. In Shock waves and extremal states of matter, Fortov, V. E., Al’tshuler, L. V., Trunin, R. F., and Funtikov, A. I. (eds), pp. 342–387. Nauka, Moscow.

Gryaznov, V. K., Zhernokletov, M. V., Zubarev, V. N., Iosilevskii, I. L., and Fortov, V. E. (1980). Thermodynamic properties of a nonideal argon or xenon plasma. JETP, 51, 288–295.

Hamann, S. D. and Linton, M. (1966). Electrical conductivity of water in shock compression. Trans. Faraday Soc., 62, 2234–2241.

Hamann, S. D. and Linton, M. (1969). Electrical conductivities of aqueous solutions of KCl, KOH and HCl, and the ionization of water at high shock

REFERENCES

371

pressures. Trans. Faraday Soc., 65, 2186–2193.

Hamilton, D. C., Nellis, W. J., Mitchell, A. C., Ree, F. H., and van Thiel, M. (1988). Electrical conductivity and equation of state of shock–compressed liquid oxygen. J. Chem. Phys., 88, 5042–5050.

Hanfland, M., Syassen, K., Christensen, N. E., and Novikov, D. L. (2000). New high–pressure phases of lithium. Nature, 408, 174–178.

Haronska, P., Kremp, D. et al. (1987). (unpublished).

Hawke, P. S., Burgers, T. J., Duerre, D. E., Huebel, J. G., Keeler, R. N., Klapper, H., and Wallace, W. C. (1978). Observation of electrical conductivity of isentropically compressed hydrogen at megabar pressures. Phys. Rev. Lett., 41, 994–997.

Hensel, F. and Franck, E. U. (1968). Metal–nonmetal transition in dense mercury vapor. Rev. Mod. Phys., 40, 697–703.

Holmes, N. S., Ross, M., and Nellis, W. J. (1995). Temperature measurements and dissociation of shock–compressed liquid deuterium and hydrogen. Phys. Rev. B., 52, 15835–15845.

Holzapfel, W. and Franck, E. U. (1966). conductivity and ionic dissociation of water at 1000 C and 100 kbar. Ber. Bunsenges. Phys. Chem., 70, 1105–1112.

Iosilevskii, I. L. (1980). Equation of state of nonideal plasma. High Temp., 18, 355–359.

Ivanov, Y. V., Mintsev, V. B., Fortov, V. E., and Dremin, A. N. (1976). Electric conductivity of nonideal plasma. JETP, 44, 112–116.

Juranek, H., Redmer, R., R¨opke, G., Fortov, V. E., and Pyalling, A. A., (1999). A comparative study for the equation of state of dense fluid hydrogen. Contrib. Plasma Phys., 39, 251–261.

Kanel’, G. I. and Molodets, A. M. (1976). Behavior of glass k–8 under dynamic compressing and subsequent unloading. Techn. Phys, 46, 398–407.

Keeler, R., van Thiel, M., and Alder, B. (1965). Corresponding states at small interatomic distances. Physica, 31, 1437–1440.

Kerley, G. I. (1972). A theoretical equation of state for deuterium. NTIS document LA–47766. National technical information service, Springfield, VA.

Kirzhnits, D. A., Lozovic, Y. E., and Shpatakovskaya, G. V. (1975). Statistical model of matter. Sov. Phys. Uspekhi, 18, 3–48.

Knaup, M., Reinhard, P. G., and Top er, C. (1999). Wave packet molecular dynamics simulations of hydrogen near the transition to a metallic fluid. Contrib. Plasma Phys., 39, 57–60.

Knudson, M. D., Hanson, D. L., Bailey, J. B., Hall, C. A., Asay, J. R., and Anderson, W. W. (2001). Equation of state measurements in liquid deuterium to 70 GPa. Phys. Rev. Lett., 87, 225501/1–4.

Kulish, M. I., Gryaznov, V. K., Kvitov, S. V., Mintsev, V. B., Nikolaev, D. N., Ternovoi, V. Y., Filimonov, A. S., Fortov, V. E., Golubev, A. A., Sharkov, B. Y., Ho mann, D., Stockl, K., and Wetzler, H. (1995). Absorption coe cients of dense argon and xenon plasma. High Temp., 33, 966–969.

372 METALLIZATION OF NONIDEAL PLASMAS

Le Neindre, B., Suito, K., and Kawai, N. (1976). Fixed oints for pressure calibration above 10 GPa. High Temp.–High Pres., 8, 1–20.

Lenosky, T. J., Kress, J. D., Collins, L. A., and Kwon, I. (1997). Molecular– dynamics modeling of shock–compressed liquid hydrogen. Phys. Rev.B, 55, 11907–11910.

Likal’ter, A. A. (1998). Is superdense fluid hydrogen a molecular metal? JETP, 86, 598–601.

Likal’ter, A. A. (2000). Critical points of condensation in Coulomb systems.

Phys. Uspekhi, 43, 777–797.

Maksimov, E. G. and Shilov, Y. I. (1999). Hydrogen at high pressure. Phys. Uspekhi, 42, 1121–1138.

McMahan, A. K. and Albers, R. C. (1982). Insulating nickel at a pressure of 34 TPa. Phys. Rev. Lett., 49, 1198–1201.

Meletov, K. P., Dolganov, V. K., Zharikov, O. V., Kremenskaya, I. N., and Ossipyan, Y. A. (1992). Absorption spectra of crystalline fullerite 60 at pressures up to 19 GPa. J. Phys. I France, 2, 2097–2105.

Mintsev, V. B. and Fortov, V. E. (1979). Electrical conductivity of xenon under supercritical conditions. JETP Lett., 30, 375–378.

Mintsev, V. B. and Fortov, V. E. (1982). Explosive shock tubes. High Temp., 20, 745–764.

Mintsev, V. B., Fortov, V. E., and Gryaznov, V. K. (1980). Electrical conductivity of a high–temperature nonideal plasma. JETP, 52, 59–63.

Mintsev, V. B., Ternovoi, V. Y., Gryaznov, V. K., Pyalling, A. A., Fortov, V. E., Iosilevskii, I. L. (2000). Electrical conductivity of shock–compressed xenon. In Shock compression of condensed matter – 1999, Furnish, M. D., Chhabildas, L. C., and Hixson, R.S. (eds), pp. 987–990. AIP Press, New York.

Mitchell, A. C. and Nellis, W. J. (1982). Equation of state and electrical conductivity of water and ammonia shocked to the 100 GPa (1 Mbar) pressure range. J. Chem. Phys. 76, 6273–6281.

Mochalov, M. A. and Kuznetsov, O. N. (2001). Measurement of conductivity of gaseous hydrogen compressed quasi–isentropically to pressure 1500 GPa.

Abstracts of “III Khariton’s subject readings”, Sarov, p. 108

Mori, Y. and Ruo , A. L. (1999). Lithium becomes a molecular solid at high pressure. Bull. Am. Phys. Soc., 44, 1489.

Moshary, F., Chen, N. H., and Silvera, I. F. (1992). Gap reduction and the collapse of solid C60 to a new phase of carbon under pressure. Phys. Rev. Lett., 69, 466–469.

Mostovych, A. N., Chan, Y., Lehecha, T., Schmitt, A., and Sethian, J. D. (2000). Reflected shock experiments on the equation–of–state properties of liquid deuterium at 100–600 GPa (1–6 Mbar). Phys. Rev. Lett., 85, 3870– 3873.

Mott, N. F. and Davis, E. A. (1979). Electron processes in noncrystalline materials. Clarendon Press, Oxford.

Mulenko, I. A., Olejnikova, E. N., Khomkin, A. L., Filinov, V. S., Bonitz, M.,

REFERENCES

373

and Fortov, V. E. (2001). Phase transition in dense low–temperature molecular gases. Phys. Lett. A, 289, 141–146.

Nabatov, S. S., Dremin, A. N., Postnov, V. I., and Yakushev, V. V. (1979). Measurement of the electrical conductivity of sulfur under superhigh dynamic pressures. JETP Lett., 29, 369–372.

Neaton, J. B. and Ashcroft, N. W. (1999). Pairing in dense lithium. Nature, 400, 141–144.

Neaton, J. B. and Ashcroft, N. W. (2001). On the constitution of sodium at higher densities. Phys. Rev. Lett., 86, 2830–2833.

Nellis, W. J. (2000). Metallization of fluid hydrogen at 140 GPa (1.4 Mbar): Implications for Jupiter. Plan. Space Sci., 48, 671–677.

Nellis, W., van Thiel, M., and Mitchel, A. (1982). Shock compression of liquid xenon to 130 GPa (1.3 Mbar). Phys. Rev. Lett., 48, 816–818.

Nellis, W. J., Mitchell, A. C., van Thiel, M., Devine, G. J., Trainor, R. J., and Brown, N. (1983). Equation–of–state data for molecular hydrogen and deuterium at shock pressures in the range 2–76 GPa (20–760 kbar). J. Chem. Phys., 79, 1480–1486.

Nellis, W. J., Holmes, N. C., Mitchell, A. C., Trainor, R. J. , Governo, G. K., Ross, M., and Young, D. A. (1984). Shock compression of liquid helium to 56 GPa (560 kbar). Phys. Rev. Lett., 53, 1248–1251.

Nellis, W. J., Weir, S. T., and Mitchell, A. C. (1998). Rev. High Press. Sci. Technol., 7, 870–872.

Nellis, W. J., Weir, S. T., and Mitchell, A. C. (1999). Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. B, 59, 3434–3449.

Osip’yan, Y. A., Fortov, V. E., Kagan, K. L., Kveder, V. V., Kulakov, V. I., Kur’yanchik, A. N., Nikolaev, R. K., Postnov, V. I., and Sidorov, N. S. (2002). Conductivity of C60 fulerene crystals under dynamic compression up to 200 kbar. JETP Lett., 75, 563–565.

Pavlovskii, A. I., Boriskov, G. V., Bykov, A. I., Dolotenko, M. I., Egorov, N. I., Karpikov, A. A., Kolokolchikov, N. P., and Mamyshev, V. I. (1987). Isentropic solid hydrogen compression bt ultrahigh magnetic field pressure in megabar range. In Megagauss technology and pulsed power applications, Fowler, C. M., Caird, R. S., and Erickson, D. J. (eds), pp. 255–262. Plenum Press, New York and London.

Pavlovskii, A. I., Kuleshov, G. D., Sklizkov, G. V., Zusin, Y. A., and Gerasimov,

A.I. (1965). High–current iron–free betatron. DAN USSR, 160, 68–70. Pierleoni, C., Ceperley, D. M., Bernu, B., and Magro, W. R. (1974). Equation of

state of the hydrogen plasma by path integral Monte Carlo simulation. Phys. Rev. Lett., 73, 2145–2149.

Podurets, M. A., Popov, L. V., Trunin, R. F., Simakov, G. V., and Moiseev, B. N. (1972). Compression of water by strong shock waves. JETP, 35, 375–376.

Postnov, V. I., Anan’eva, L. A., Dremin, A. N., Nabatov, S. S., and Yakushev, V. V. (1986). Electric conductivity and compressibility of sulfur at shock compression. Comb., Expl., Shock Waves, 22, No. 4, 106–109.

374

METALLIZATION OF NONIDEAL PLASMAS

Radousky, H. B. and Ross, M. (1988). Shock temperature measurements in high density fluid xenon. Phys. Lett. A, 129, 43–46.

Redmer, R., R¨opke, G., Kuhlbrodt, S., and Reinholz, H. (2001). Metal–nonmetal transition in dense hydrogen. Contrib. Plasma Phys., 41, 163–166.

Reichlin, R., Brister, K. E., McMahan, A.K., Ross, M., Martin, S., Vohra, Y. K., Ruo , A. L. (1989). Evidence for the insulator–metal transition in xenon from optical, X–ray, and band–structure studies to 170 GPa. Phys. Rev. Lett., 62, 669–672.

Robnik, M. and Kundt, W. (1983). Hydrogen at high pressures and temperatures. Astronom. Astrophys, 120, 227–233.

Ross, M. (1998). Linear–mixing model for shock–compressed liquid deuterium.

Phys. Rev. B, 58, 669–677.

Ross, M. and McMahan, A. K. (1980). Condensed xenon at high pressure. Phys. Rev. B, 21, 1658–1664.

Ross, M., Ree, F., and Young, D. (1983). The equation of state of molecular hydrogen at very high density. J. Chem. Phys., 79, 1487–1494.

Saleem, S., Haun, J., and Kunze, H.–J. (2001). Electrical conductivity measurements of strongly coupled W plasmas. Phys. Rev. E, 64, 056403/1–6.

Saumon, D., and Chabrier, G. (1989). Fluid hydrogen at high density: The plasma phase transition. Phys. Rev. Lett., 62, 2397–2400.

Saumon, D., and Chabrier, G. (1992). Fluid hydrogen at high density: Pressure ionization. Phys. Rev. A, 46, 2084–2100.

Seeger, K. (1977). Semiconductor physics. Springer, Wien–New York. Shimizu, K., Suhara, K., Ikumo, M., Eremets, M. I., and Amaya, K. (1998).

Superconductivity in oxygen. Nature, 393, 767–769.

Struzhkin, V. V., Hemley, R. J., and Mao, H. K. (1999). Compression of Li to 120 GPa. Bull. Am. Phys. Soc., 44, 1489.

Ternovoi, V. Y. (1980). (private communication).

Ternovoi, V. Y., Filimonov, A. S., Fortov, V. E., Kvitov, S. V., Nikolaev, D. N., and Pyalling, A. A. (1999). Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 GPa. Physica B, 265, 6–11.

Ternovoi, V. Y., Filimonov, A. S., Pyalling, A. A., Mintsev, V. B., and Fortov, V. E. (2002). Thermophysical properties of helium under multiple shock compression. In Shock compression of condensed matter. 2001, Furnish, M. D., Thadhani, N. N., and Horie, Y. (eds), pp. 107–110. AIP Press, New York.

Trubitsyn, V. P. (1966). Phase transition in hydrogen crystals. Sov. Phys. Solid State, 8, 862–865.

Urlin, V. D., Mochalov, M. A., and Mikhailova, O. L. (1992). Liquid xenon study under shock and quasi–isentropic compression. High Press. Res., 8, 595–605.

Urlin, V. D., Mochalov, M. A., and Mikhailova, O. L. (1997). Quasi–isentropic compression of liquid argon up to 500 GPa. JETP, 84, 1145–1148.

Veeser, L. I., Ekdah, C. A., Oona, H. et al. (1998). Isentropic compression of argon. In Abstracts of the 8th international conference on megagauss magnetic

REFERENCES

375

field generation and related topics, Tallahasse, p. 239.

Vereschagin, L. F., Yakovlev, E. N., Vinogradov, B. V., and Sakun, V. P. (1974). Transition of Al2O3, NaCl, and S into the conducting state. JETP Lett., 20, 246–247.

Volkov, L. P., Voloshin, N. P., Mangasarov, R. A., Simonenko, V. A., Sin’ko, G. V., and Sorokin, V. L. (1980). Shock compressibility of water at pressure of 1 Mbar. JETP Lett., 31, 513–515.

Weir, S. T., Mitchell, A. C., and Nellis, W. J. (1996a). Metallization of fluid molecular hydrogen at 140 GPa. Phys. Rev. Lett., 76, 1860–1863.

Weir, S. T., Mitchell, A. C., and Nellis, W. J. (1996b). Electrical resistivity of single–crystal Al2O3 shock–compressed in the pressure range 91–220 GPa (0.91–2.20 Mbar). J. Appl. Phys. , 80, 1522–1525.

Wigner, E. and Huntington, H. B. (1935). On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 3,764–770.

Yakub, E. S. (1990). Equation of state of shock–compressed liquid hydrogen. High Temp., 28, 490–496.

Yakub, E. S. (1999). Diatomic fluids at high pressures and temperatures: nonempirical approach. Physica, 265, 31–38.

Yakushev, V. V., Nabatov, S. S., and Yakusheva, O. V. (1974). Physical properties and transformation of acrylonitrile at high dynamic pressures. Comb., Expl., Shock Waves, 10, 583–594.

Yakushev, V. V., Postnov, V. I., Fortov, V. E., and Yakusheva, O. V. (2000). Electrical conductivity of water during quasi–isentropic compression to 130 GPa. JETP, 90, 617–622.

Young, D. (1977). A soft–sphere model for liquid metals. LLNL report UCRL– 52352, University of California.

Young, D. A., McMahan, A. K., and Ross M. (1981). Equation of state and melting curve of helium to very high pressure. Phys. Rev. B, 24, 5119–5127.

Zababakhin, E. I. (1979). Unbounded cumulation e ects. Mechanics in USSR for 50 years. Nauka, Moscow.

Zaiman, J. M. (1972). Principles of theory of solids. Cambridge University Press, London.

Zamalin, V. M., Norman, G. E., and Filinov, V. S. (1977). Method Monte Carlo in statistical thermodynamic. Nauka, Moscow.

Zel’dovich, Y. B. and Landau, L. D. (1944). On correlation between liquid and gaseous states of metals. Acta Phys.–Chim. USSR, 18, 194–198.

Zel’dovich, Y. B., Kormer, S. B., Sinitsyn, M. V., and Yushko, K. B. (1961). Investigation of optical properties of transparent substances at superhigh pressures. DAN USSR, 138, 1333–1336.