- •Preface
- •Contents
- •1 Nonideal plasma. Basic concepts
- •1.1 Interparticle interactions. Criteria of nonideality
- •1.1.1 Interparticle interactions
- •1.1.2 Coulomb interaction. Nonideality parameter
- •1.1.4 Compound particles in plasma
- •1.2.2 Metal plasma
- •1.2.3 Plasma of hydrogen and inert gases
- •1.2.4 Plasma with multiply charged ions
- •1.2.5 Dusty plasmas
- •1.2.6 Nonneutral plasmas
- •References
- •2.1 Plasma heating in furnaces
- •2.1.1 Measurement of electrical conductivity and thermoelectromotive force
- •2.1.2 Optical absorption measurements.
- •2.1.3 Density measurements.
- •2.1.4 Sound velocity measurements
- •2.2 Isobaric Joule heating
- •2.2.1 Isobaric heating in a capillary
- •2.2.2 Exploding wire method
- •2.3 High–pressure electric discharges
- •References
- •3.1 The principles of dynamic generation and diagnostics of plasma
- •3.2 Dynamic compression of the cesium plasma
- •3.3 Compression of inert gases by powerful shock waves
- •3.4 Isentropic expansion of shock–compressed metals
- •3.5 Generation of superdense plasma in shock waves
- •References
- •4 Ionization equilibrium and thermodynamic properties of weakly ionized plasmas
- •4.1 Partly ionized plasma
- •4.2 Anomalous properties of a metal plasma
- •4.2.1 Physical properties of metal plasma
- •4.2.2 Lowering of the ionization potential
- •4.2.3 Charged clusters
- •4.2.4 Thermodynamics of multiparticle clusters
- •4.3 Lowering of ionization potential and cluster ions in weakly nonideal plasmas
- •4.3.1 Interaction between charged particles and neutrals
- •4.3.2 Molecular and cluster ions
- •4.3.3 Ionization equilibrium in alkali metal plasma
- •4.4 Droplet model of nonideal plasma of metal vapors. Anomalously high electrical conductivity
- •4.4.1 Droplet model of nonideal plasma
- •4.4.2 Ionization equilibrium
- •4.4.3 Calculation of the plasma composition
- •4.5 Metallization of plasma
- •4.5.3 Phase transition in metals
- •References
- •5.1.1 Monte Carlo method
- •5.1.2 Results of calculation
- •5.1.4 Wigner crystallization
- •5.1.5 Integral equations
- •5.1.6 Polarization of compensating background
- •5.1.7 Charge density waves
- •5.1.8 Sum rules
- •5.1.9 Asymptotic expressions
- •5.1.10 OCP ion mixture
- •5.2 Multicomponent plasma. Results of the perturbation theory
- •5.3 Pseudopotential models. Monte Carlo calculations
- •5.3.1 Choice of pseudopotential
- •5.5 Quasiclassical approximation
- •5.6 Density functional method
- •5.7 Quantum Monte Carlo method
- •5.8 Comparison with experiments
- •5.9 On phase transitions in nonideal plasmas
- •References
- •6.1 Electrical conductivity of ideal partially ionized plasma
- •6.1.1 Electrical conductivity of weakly ionized plasma
- •6.2 Electrical conductivity of weakly nonideal plasma
- •6.3 Electrical conductivity of nonideal weakly ionized plasma
- •6.3.1 The density of electron states
- •6.3.2 Electron mobility and electrical conductivity
- •References
- •7 Electrical conductivity of fully ionized plasma
- •7.1 Kinetic equations and the results of asymptotic theories
- •7.2 Electrical conductivity measurement results
- •References
- •8 The optical properties of dense plasma
- •8.1 Optical properties
- •8.2 Basic radiation processes in rarefied atomic plasma
- •8.5 The principle of spectroscopic stability
- •8.6 Continuous spectra of strongly nonideal plasma
- •References
- •9 Metallization of nonideal plasmas
- •9.1 Multiple shock wave compression of condensed dielectrics
- •9.1.1 Planar geometry
- •9.1.2 Cylindrical geometry
- •9.3 Metallization of dielectrics
- •9.3.1 Hydrogen
- •9.3.2 Inert gases
- •9.3.3 Oxygen
- •9.3.4 Sulfur
- •9.3.5 Fullerene
- •9.3.6 Water
- •9.3.7 Dielectrization of metals
- •9.4 Ionization by pressure
- •References
- •10 Nonneutral plasmas
- •10.1.1 Electrons on a surface of liquid He
- •10.1.2 Penning trap
- •10.1.3 Linear Paul trap
- •10.1.4 Storage ring
- •10.2 Strong coupling and Wigner crystallization
- •10.3 Melting of mesoscopic crystals
- •10.4 Coulomb clusters
- •References
- •11 Dusty plasmas
- •11.1 Introduction
- •11.2 Elementary processes in dusty plasmas
- •11.2.1 Charging of dust particles in plasmas (theory)
- •11.2.2 Electrostatic potential around a dust particle
- •11.2.3 Main forces acting on dust particles in plasmas
- •11.2.4 Interaction between dust particles in plasmas
- •11.2.5 Experimental determination of the interaction potential
- •11.2.6 Formation and growth of dust particles
- •11.3 Strongly coupled dusty plasmas and phase transitions
- •11.3.1 Theoretical approaches
- •11.3.2 Experimental investigation of phase transitions in dusty plasmas
- •11.3.3 Dust clusters in plasmas
- •11.4 Oscillations, waves, and instabilities in dusty plasmas
- •11.4.1 Oscillations of individual particles in a sheath region of gas discharges
- •11.4.2 Linear waves and instabilities in weakly coupled dusty plasmas
- •11.4.3 Waves in strongly coupled dusty plasmas
- •11.4.4 Experimental investigation of wave phenomena in dusty plasmas
- •11.5 New directions in experimental research
- •11.5.1 Investigations of dusty plasmas under microgravity conditions
- •11.5.2 External perturbations
- •11.5.3 Dusty plasma of strongly asymmetric particles
- •11.5.4 Dusty plasma at cryogenic temperatures
- •11.5.5 Possible applications of dusty plasmas
- •11.6 Conclusions
- •References
- •Index
REFERENCES |
237 |
glass tube channels, because of their considerable mass, this being erroneously interpreted as the plasma “stability”.
Hall et al. (1988) obtained a plasma with density several times higher than that of solids and temperature of about 1 eV, by collision of two shock waves excited by high–power [(4–5)·1012 W cm−2] laser radiation with a wavelength of 0.53 m and pulse duration of about 100 ps. Peculiarities of the X–ray radiation, produced by an external source and transmitted through the plasma, were interpreted by Hall et al. (1988) as the presence of short–range order associated with the Wigner concentration in a highly compressed aluminum plasma. When interpreting the results of these interesting experiments, one should apparently perform numerical simulations of the complex process of plasma generation and assess the nonequilibrium e ects during the melting of aluminum.
In a strongly compressed plasma, the occurrence of electronic phase transformations is possible due to the transition of inner electronic shells of an atom or ion from the discrete spectrum to the continuous one. Phase transitions associated with the electron redistribution in shells in the course of compression (Kirzhnits et al. 1975; Bushman and Fortov 1983) were theoretically analyzed using band theory methods (Alekseev and Arkhipov 1962; Arkhipov 1965; Royce 1967; Reichlin et al. 1989) and detected experimentally by Altshuler and Bakanova (1969), Trunin et al. (1969), Shatzman (1977), and Avrorin et al. (1987). Brush et al. (1963) and Kirzhnits et al. (1975) predicted electronic transformations at ultrahigh pressures, corresponding to the first–order phase transition, with an electronic shell being in a discrete spectrum in one phase and in a continuous spectrum in the other phase. Naturally, such electronic transitions correspond in fact to a series of phase transitions (Carmi 1968) caused by the “ionization by pressure” of a sequence of electronic shells. The evaluation of the parameters of these transformations using quasiclassical theory techniques (Kirzhnits et al. 1975) leads to ultrahigh pressures over 30 TPa which became experimentally accessible only recently (see Chapter 9).
References
Abe, R. (1959). Giant cluster expansion theory and its application to high temperature plasma. Progr. Theor. Phys., 22, 213–226 .
Ageev, V. G., Bushman, A. V., Kulish, M. I., Lebedev, M. E., Leont’ev, A. A., Ternovoi, V. Y., Filimonov, A. S., and Fortov, V. E. (1988). Thermodynamics of a dense lead plasma near the high–temperature boiling curve. JETP Lett., 48, 659–663.
Akkerman, A. F., Demidov, B. A., Fortov, V. E., et al. (1986). Application of the heavy–current relativistic electron beams in dynamic physics of high temperatures and pressures. Joint Institute of Chemical Physics, Chernogolovka.
Alekseev, E. S. and Arkhipov, R. G. (1962). Electron transitions in cesium and rubidium under pressure. Phys. Solid State, 4, 1077–1081.
Alekseev, V. A., Starostin, A. N., Vedenov, A. A., and Ovcharenko, V. G. (1972). Nature of thermoelectric power of mercury in transcritical state. JETP
238 THERMODYNAMICS OF PLASMAS WITH DEVELOPED IONIZATION
Lett., 16, 49–53.
Alekseev, V. A., Fortov, V. E., and Iakubov I. T. (l981). Current status of physics of nonideal plasma. In Proceedings of the 15th international conference on phenomena in ionized gases, Minsk. Invited papers, pp. 73–85.
Altshuler, L. V. (1965). Use of shock waves in high–pressure physics. Sov. Phys. Uspekhi, 8, 52–91.
Altshuler, L. V. and Bakanova, A. A. (1969). Electronic structure and compressibility of metals at high pressures. Sov. Phys. Uspekhi, 11, 678–689.
Altshuler, L. V., Kalitkin, N. N., Kuzmina, L. V., and Chekin, B. S. (1977). Shock adiabats for ultrahigh pressures. JETP, 45, 167–171.
Arkhipov, R. G. (1965). On possibility of existence of the critical point for electron transitions of the first type. JETP, 49, 1601–1604.
Armstrong, B. H., Johnson, R. R., Kelly, R. S., DeWitt, H. E., and Brush, S. G. (1967). Opacity of high temperature air. In Progress in High Temperature Physics and Chemistry. Vol. 1, Rouse, C. A. (ed.), pp. 139–242. Pergamon Press, New York.
Avrorin, E. N., Vodolaga, B. K., Voloshin, N. P., Kovalenko, G. V., Kuropatenko, V. F., Simonenko, V. A., and Chernovolyuk, B. T. (1987). Experimental study of the influence of electron shell structure on shock adiabats of condensed materials. JETP, 66, 347–354.
Barker, A. A. (1971). E ective potentials between the components of a hydrogeneous plasma. J. Chem. Phys., 55, 1751–1759.
Baus, M. and Hansen, J. P. (1980). Statistical mechanics of simple coulomb systems. Phys. Rep., 59, 228–237.
Berne, B. J., Ciccotti, G., and Coker, D. F. (eds). (1998). Classical and quantum dynamics of condensed phase simulation. World Scientific, Singapore.
Bespalov, V. E., Gryaznov, V. K., Dremin, A. N., and Fortov, V. E. (1975). Dynamic compression of nonideal argon plasma. JETP, 42, 1046–1049.
Brush, S. G., DeWitt, H. E., and Trulio, H. E. (1963). Equation of state of classical systems of charged particles. Nucl. Fusion., 3, 5–22.
Brush, S. G., Sahlin, H. L., and Teller, E. (1966). Monte Carlo study of a one–component plasma. I. J. Chem. Phys., 45, 2102–2118.
Bushman, A. V. and Fortov, V. E. (1983). Model equations of state. Phys. Uspekhi, 26, 465–496.
Bushman, A. and Fortov, V. (1988). Wide–range equation of state for matter under extreme conditions. Sov. Tech. Rev. B Therm. Phys., 1, 162–181.
Bushman, A. V., Lomakin, B. N., Sechenov, V. A., and Sharipdzhanov, I. I. (1975). Thermodynamics of nonideal cesium plasma. JETP, 42, 828–831.
Carley, D. D. (1974). Parametric integral equation for radial distribution functions. Phys. Rev. A, 10, 863–867.
Carmi, G. (1968). First–order phase transitions in quantum–Coulomb plasmas.
J. Math. Phys., 9, 2120–2131.
Carnahan, N. F. and Starling, K. E. (1969). Equation of state for nonattracting rigid spheres. J. Chem. Phys., 51, 635–636.
REFERENCES |
239 |
Ceperley, D. (1978). Ground state of the fermion one–component plasma: A Monte Carlo study in two and three dimensions. Phys. Rev. B, 18, 3126–3138.
Ceperley, D. (1995). Path integrals in the theory of condensed helium. Rev. Mod. Phys., 67, 279–355.
Cohen, E. G. D. and Murphy, T. J. (1969). New results in the theory of the classical electron gas. 12, 1404–1411; (1970). Erratum. 13, 216.
Coock, M. A. (1958). The science of high explosives. Reinhold, New York. Coock, M. A. and McEwan, W. S. (1958). Cohesion in plasma. J. Appl. Phys.,
29, 1612–1613.
Coock, M. A., Doran, R. L., and Morris, G. J. (1955a). Measurement of detonation velocity by doppler e ect at three–centimeter wavelength. J. Appl. Phys., 26, 426–428.
Coock, M. A., Horsley, G. S., Partridge, W. S., and Ursenbach, W. O. (1955b). Velocity–diameter and wave shape measurements and the determination of reaction rates in TNT. J. Chem. Phys., 24, 60–67.
Coock, M. A., Keyes, R. T., and Udy, L. L. (1981). Propagation characteristics of detonation–generated plasmas. J. Appl. Phys., 52, 1881–1895.
Davis, W. C. and Campbell, A. W. (1960). Ultra–high–speed photographs refuting “cohesion in plasma”. J. Appl. Phys., 31, 1225–1227.
Deutsch, C., Furutani, Y., and Gombert, M. M. (1981). Nodal expansions for strongly coupled classical plasmas. Phys. Rep., 69, 1358–1368.
DeWitt, H. E. (1962). Evaluation of the quantum–mechanical ring sum with Boltzmann statistics. J. Math. Phys., 3, 1216–1228.
DeWitt, H. E. (1976). Asymptotic form of the classical one–component plasma fluid equation of state. Phys. Rev. A, 14, 1290–1293.
DeWitt, H. E. (1977). Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation. In Strongly coupled plasmas, Kalman, G. J. and Carini, P. (eds), pp. 81–115. Plenum Press, New York.
DeWitt, H. E. and Hubbard, W. B. (1976). Statistical mechanics of light elements at high pressure. IV – A model free energy for the metallic phase.
Astrophys. J., 205, 295–301.
DeWitt, H. E. and Rosenfeld, Y. (1979). Derivation of the one component plasma fluid equation of state in strong coupling. Phys. Lett., 75, 79–80.
Dharma–wardana, M. W. C. and Perrot, F. (1982). Density–functional theory of hydrogen plasmas. Phys. Rev. A, 26, 2096–2104.
Dikhter, I. Y. and Zeigarnik, V. A. (1977). Equation of state and conductivity of a highly ionized cesium plasma. High Temp., 15, 196–198.
Dubin, D. H. E. and O’Neil, T. M. (1999). Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states). Rev. Mod. Phys., 83, 87–172.
Ebeling, W. and Sandig, R. (1973). Theory of the ionization equilibrium in dense plasmas. Ann. Phys., 28, 289–305.
Ebeling, W., Kreft, W. D., and Kremp, D. (1976). Theory of bound states and ionization equilibrium in plasmas and solids. Akademie–Verlag, Berlin.
Ebeling, W., Forster, A., Richert, W., and Hess, H. (1988). Thermodynamic
240 THERMODYNAMICS OF PLASMAS WITH DEVELOPED IONIZATION
properties and plasma phase transition of xenon at high pressure and high temperature. Physica A, 150, 159–171.
Ebeling, W., F¨orster, A., Fortov, V., Gryaznov, V., and Polishchuk, A. (1991).
Thermophysical properties of hot dense plasmas. Teubner, Stuttgart–Leipzig. Edwards, B. and Ashcroft, N. W. (1997). Spontaneous polarization in dense
hydrogen. Nature, 388, 652–655.
Filinov, V. S. (2000). Method Monte Carlo and method of molecular dynamics in the theory of nonideal quantum plasma. In Encyclopedia of low temperature plasma. Introductory volume 3., Fortov, V. E. (ed.), pp. 243–252. Nauka, Moscow.
Filinov, V. S. (2001). Cluster expansion for ideal Fermi systems in the “fixed– node approximation”. J. Phys. A, 34, 1665–1677.
Filinov, V. S., Bonitz, M., Ebeling, W., and Fortov, V. E. (2001a). Thermodynamics of hot dense H–plasmas: Path integral Monte Carlo simulations and analytical approximations. Plasma. Phys. Control. Fusion, 43, 743–759.
Filinov, V. S., Bonitz, M., and Fortov, V. E. (2000a). High–density phenomena in hydrogen plasma. JETP Lett., 72, 361–365.
Filinov, V. S., Fortov, V. E., Bonitz, M., and Kremp, D. (2000b). Pair distribution functions of dense partially ionized hydrogen. Phys. Lett. A, 274, 228–235.
Filinov, V. S., Fortov, V. E., Bonitz, M., and Levashov, P. R. (2001b). Phase transition in strongly degenerate hydrogen plasma. JETP Lett., 74, 384–387.
Filinov, V. S., Levashov, P. R., Fortov, V. E., and Bonitz, M. (2000c). Thermodynamic properties of correlated strongly degenerate plasmas. In Progress in nonequilibrium Green’s functions, Bonitz M. (ed.), pp. 513–520. World Scientific, Singapore.
Filinov, V. S. and Norman, G. E. (2000). Use of the Monte Carlo method for calculation of thermodynamical properties, chemical and ionization equilibrium. In Encyclopedia of low temperature plasma. Introductory volume 3., Fortov, V. E. (ed.), pp. 236–243. Nauka, Moscow.
Fisher, D. S., Halperin, B. I., and Platzman, P. M. (1979). Phonon–ripplon coupling and the two–dimensional electron solid on a liquid–helium surface.
Phys. Rev. Lett., 42, 798–801.
Fortov, V. E. (1972). Hydrodynamic e ects in a nonideal plasma. High Temp., 10, 141–153.
Fortov, V. E. (1982). Dynamic methods in plasma physics. Sov. Phys. Uspekhi, 25, 781–809.
Fortov, V. E., Leont’ev, A. A., Dremin, A. N., and Gryaznov, V. K. (1976). Shock–wave production of a nonideal plasma. JETP, 44, 116–122.
Fortov, V. E., Lomakin, B. N., and Krasnikov, Y. G. (1971). Thermodynamic properties of a cesium plasma. High Temp., 9, 789–797.
Fortov, V. E., Musyankov, S. I., Yakushev, V. V. (1974). On “anomalous” e ects on going out of detonation wave at free surface. High Temp., 12, 957–963.
Galam, S. and Hansen, J. P. (1976). Statistical mechanics of dense ionized
REFERENCES |
241 |
matter. VI. Electron screening corrections to the thermodynamic properties of the one–component plasma. Phys. Rev. A, 14, 816–832.
Gann, R. C., Chakravarty, S., and Chester, G. V. (1979). Monte Carlo simulation of the classical two–dimensional one–component plasma. Phys. Rev. B, 20, 326–344.
Gell–Mann, M. and Brueckner, K. A. (1957). Correlation energy of an electron gas at high density. Phys. Rev., 106, 364–368.
Gilbert, S. L., Bollinger, J. J., and Wineland, D. J. (1988). Shell–structure phase of magnetically confined strongly coupled plasma. Phys. Rev. Lett., 60, 2022–2026.
Gillan, M. J. (1974). A simple model for the classical one–component plasma.
J. Phys. C, 7, L1–L4.
Gorobchenko, V. D. and Maksimov, E. G. (1980). The dielectric constant of an interacting electron gas. Sov. Phys. Uspekhi, 23, 35–58.
Graboske, H. C., Harwood, D. J., and Rogers, F. J. (1969). Thermodynamic properties of nonideal gases. I. Free–energy minimization method. Phys. Rev., 186, 210–225.
Graboske, H. C., Harwood, Jr. D. J., and DeWitt, H. E. (1971). Thermodynamic properties of nonideal gases. II. The strongly ionized gas. Phys. Rev. A, 3, 1419–1431.
Graboske, H. C., DeWitt, H. E., Grosmann, A. S., and Cooper, M. S. (1973). Screening factors for nuclear reactions. 2. Intermediate screening and astrophysical applications. Astrophys. J., 181, Part 1, 457–474.
Grimes, C. C. and Adams, G. (1979). Evidence for a liquid–to–crystal phase transition in a classical, two–dimensional sheet of electrons. Phys. Rev. Lett., 42, 798–801.
Gryaznov, V. K. and Iosilevskii, I. L. (1973). Problem of construction of interpolation equation of state of plasma. In Numerical methods of continuous matter mechanics, No. 4, pp. 166–171.Siberian Division AN USSR, Novosibirsk.
Gryaznov, V. K. and Iosilevskii, I. L. (1976). Some problems or thermodynamical calculation of multicomponent strongly coupled plasma. In Thermophysical properties of low temperature plasma, Ivlev, V.M. (ed.), pp. 25–29. Nauka, Moscow.
Gryaznov, V. K., Zhernokletov, M. V., Zubarev, V. N., Iosilevskii, I. L., and Fortov, V. E. (1980). Thermodynamic properties of a nonideal argon or xenon plasma. JETP, 51, 288–295.
Gryaznov, V. K., Iosilevskii, I. L., and Fortov, V. E. (1982). Thermodynamics of strongly heated plasma of megabar pressure range. Techn. Phys. Lett., 8, 1378–1381.
Gryaznov, V. K., Ivanova, A. N., Gutsev, G. L., Levin, A. A., and Krestinin, A. V. (1989). The complex of programs ESCAPAK for calculations of the electronic structure adapted for the EC computers. J. Structural Chem., 30, 132–141.
Guttman, A. J., Ninham, B. W., and Tompson, C. J. (1968). Determination of
242 THERMODYNAMICS OF PLASMAS WITH DEVELOPED IONIZATION
critical behaviour in lattice statistics from series expansions. Phys. Lett., 26, 180–181.
Hall, T. A., Djaoui, A., Eason, R. W., Jackson, C. L., Shiwai, B., Rose, S. L., Cole, A., and Apte, P. (1988). Experimental observation of ion correlation in a dense laser–produced plasma. Phys. Rev. Lett., 60, 2034–2037.
Hansen, J. P. (1973). Statistical mechanics of dense ionized matter. I. Equilibrium properties of the classical one–component plasma. Phys. Rev. A, 8, 3096–3109.
Hansen, J. P., Torrie, G. M., and Vieillefosse, P. (1977). Statistical mechanics of dense ionized matter. VII. Equation of state and phase separation of ionic mixtures in a uniform background. Phys. Rev. A, 16, 2153–2168.
Herzfeld, K. F. (1927). On atomic properties which make an element a metal. Phys. Rev., 29, 701–705.
Hirt, C. W. (1967). Solution of the Born–Green–Yvon equation for a high density one–component plasma. Phys. Fluids, 10, 565–570.
Iakubov, I. T. (2000). Electric conductivity of low temperature plasma in wide range of parameters. In Encyclopedia of low temperature plasma. Introductory volume 1, Fortov, V. E. (ed.), pp. 536–545. Nauka, Moscow.
Ichimaru, S. (1977). (private communication).
Ichimaru, S. (1982). Strongly coupled plasmas: High–density classical plasmas and degenerate electron liquids. Rev. Mod. Phys., 54, 1017–1059.
Ichimaru, S. (1992). Statistical plasma physics. Vol. 1: Basic principles. Addi- son–Wesley, Redwood City.
Ikezi, H., Schwarzenegger, K., Simons, A. L., Passner A. L., and McCall, S. L. (1978). Optical–properties of expanded fluid mercury. Phys. Rev. A, 18, 2494–2499.
Iosilevskii, I. L. (1980). Equation of state of nonideal plasma. High Temp., 18, 355–359.
Iosilevskii, I. L. (1985). Phase transition in the simplest model of plasma. High Temp., 23, 1041–1049.
Iosilevskii, I. L. and Gryaznov, V. K. (1981). About comparative precision of thermodynamic description of gaseous plasma properties in Thomas–Fermi and Saha approximations. High Temp., 19, 1121–1124.
Iosilevskii, I. L. and Starostin, A. N. (2000). Problem of thermodynamical stability of low temperature plasma. In Encyclopedia of low temperature plasma. Introductory volume 1, Fortov, V. E. (ed.), pp. 327–339. Nauka, Moscow.
Jankovic, B. (1977). Pair correlation function in a dense plasma and pycnonuclear reactions in stars. J. Stat. Phys., 17, 357–362.
Kalitkin, N. N. (1960). The Thomas–Fermi model of the atom with quantum and exchange corrections. JETP, 11, 1106–1110.
Kalitkin, N. N. (1989). Models of matter at extremal state. In Mathematical modelling: Physicochemical properties of matter, Samarskii, A. A. and Kalitkin, N. N. (eds), pp. 114–161. Nauka, Moscow.
Kalitkin, N. N. and Kuzmina, L. V. (1975). Tables of thermodynamic functions
REFERENCES |
243 |
of matter at high energy concentration. Preprint No. 35 of the Institute of Applied Mechanics. Moscow.
Kalitkin, N. N. and Kuzmina, L. V. (1976). Quantum–statistical equation of state and shock adiabats. Preprint No. 14 of the Institute of Applied Mechanics. Moscow.
Kalitkin, N. N. and Kuzmina, L. V. (2000). Wide–range shock adiabats. In
Shock waves and extremal state of matter, Fortov, V. E., Altshuler, L. V., Trunin, R. F., and Funtikov, A. I. (eds), pp. 107–120. Nauka, Moscow.
Kalitkin, N. N., Kuzmina, L. V., and Rogov, V. S. (1972). Tables of thermodynamic functions and transport coe cients of plasma. Preprint No. 21 of the Institute of Applied Mechanics. Moscow.
Kelbg, G. (1964). Klassische statistische Mechanik der Teilchen–Mischungen mit sortenabh¨angigen weitreichenden zwischenmolekularen Wechselwirkungen
Ann. Physik, 14, 394–401.
Khrapak, A. G. and Yakubov, I. T. (1970). Phase transition and negatively– charged complexes in a nonideal plasma of metal vapor. JETP, 32, 514–516.
Kirzhnits, D. A. (1976). Are the Kramers–Kronig relations for the dielectric permittivity of a material always valid? Sov. Phys. Uspekhi, 19, 530–537.
Kirzhnits, D. A. and Shpatakovskaya, G. V. (1995). Statistical model of matter, corrected in the neighborhood of nuclei. JETP, 81, 679–686.
Kirzhnits, D. A., Lozovik, Y. E., and Shpatakovskaya, G. V. (1975). Statistical model of matter. Sov. Phys. Uspekhi, 18, 3–48.
Klyuchnikov, N. I. and Lyubimova, I. A. (1987). Density functional method in thermodynamics of strongly compressed matter. In Reviews on thermophysical properties of matter, No. 66. IVTAN, Moscow.
Kopyshev, V. P. (1978). On thermodynamics of nuclei of monatomic matter.
Preprint No. 59 of the Institute of Applied Mechanics. Moscow.
Kormer, S. B., Funtikov, L. I., Urlin, V. D., and Kolesnikova, A. N. (1962). Dynamic compression of porous metals and the equation of state with variable specific heat at high temperatures. JETP, 42, 686–702.
Kovalenko, N. T. and Fisher, I. Z. (1973). Method of integral equations in statistical theory of liquids. Sov. Phys. Uspekhi, 15, 592–607.
Krasnikov, Y. (1977). Thermodynamics of a nonideal low–temperature plasma. JETP, 73, 516–525.
Kunavin, A. G., Kirillin, A. V., and Korshunov, Y. S. (1974). Investigation of cesium plasma by method of adiabatic compression. High Temp., 12, 1302– 1305.
Kuznetsov, N. M. (1945). Tables of thermodynamical functions and shock adiabats of air at high temperatures. Mashinostroenie, Moscow.
Landau, L. D. and Lifshitz, E. M. (1980). Statistical physics, Part 1. Pergamon, New York.
Larkin, A. I. (1960). Thermodynamic functions of a low–temperature plasma. JETP, 11, 1363–1364.
244 THERMODYNAMICS OF PLASMAS WITH DEVELOPED IONIZATION
Latter, R. (1955). Temperature behavior of the Thomas–Fermi statistical model for atoms. Phys. Rev., 99, 1854–1870.
Latter, R. (1956). Thomas–Fermi model of compressed atoms. J. Chem. Phys., 24, 280–292.
Lebowitz, J. L. and Percus, J. K. (1966). Mean spherical model for lattice gases with extended hard cores and continuum fluids. Phys. Rev., 144, 251–258.
Liberman, D. A. (1979). Self–consistent field model for condensed matter. Phys. Rev. E, 20, 981–4989.
Lieb, E. H. and Narnhofer, H. J. (1975). The thermodynamic limit for jellium.
J. Stat. Phys., 12, 291–310.
Likal’ter, A. A. (1969). Interaction of atoms with electrons and ions in a plasma. JETP, 29, 133–135.
Likal’ter, A. A. (2000). Critical points of condensation in Coulomb systems.
Phys. Uspekhi, 43, 777–797.
Lundqvist, S. and March, N. H. (eds). (1983). Theory of the inhomogeneous electron gas. Springer, New York.
Maksimov, E. G. and Dolgov, O. V. (1982). Transition temperature of strong– coupling superconductors. Sov. Phys. Uspekhi, 25, 688–704.
Maksimov, E. G., and Shilov, Y. I. (1999). Hydrogen at high pressure. Sov. Phys. Uspekhi, 14, 512–523.
Martynyuk, M. M. (1977). Phase explosion of metastable liquid. Comb., Expl., Shock Waves, 13, 213–229.
Militzer, B. and Ceperley, D. M. (2001). Path integral Monte Carlo simulation of the low–density hydrogen plasma. Phys. Rev. E, 63, 066404/1–10.
Mintsev, V. B., Fortov, V. E., and Gryaznov, V. K. (1980). Electric conductivity of a high–temperature nonideal plasma. JETP, 52, 59–63.
Mitchell, D. J. and Ninham B. W. (1968). Asymptotic behavior of the pair distribution function of a classical electron gas. Phys. Rev., 174, 280–289.
Model’, I. S. and Narozhnyi, A. T., Kharchenko, A. T., Kholin, S. A., and Khrustalev, V. V. (1985). Equation of state for graphite, aluminum, titanium, and iron at pressures > 13 Mbar. JETP Lett., 41, 332–334.
Mott, N. F. (1967). Electrons in disordered structures. Adv. Phys., 16, 49. Ng, K. C. (1974). Hypernetted chain solutions for the classical one–component
plasma up to Γ=7000. J. Chem. Phys., 61, 2680–2689.
Nikiforov, A. F., Novikov, V. G., and Uvarov, V. B. (1979). Problems of atomic science and technics. Section: Methodics and programs, 4, No. 6, 16–26.
Norman, H. E. (1971). Thermodynamics (heuristics and Monte Carlo method). In Sketches of physics and chemistry of low–temperature plasma, Polak, L. S. (ed.), pp. 260–277. Nauka, Moscow.
Norman, H. E. (2001). Plasma phase transition. Contrib. Plasma Phys., 41, 127–130.
Norman, G. E. and Starostin, A. N. (1970). Thermodynamics of strongly nonideal plasma. High Temp., 8, 381–408.
REFERENCES |
245 |
Novikov, V. G. (1985). Shock compression of lithium and iron according to model MCPS. Preprint No. 133 of the Institute of Applied Mechanics. Moscow.
Overhauser, A. W. (1968). Exchange and correlation instabilities of simple metals. Phys. Rev., 167, 691–695.
Overhauser, A. W. (1978). Charge–density waves and isotropic metals. Adv. Phys., 27, 343–364.
Pollock, E. L. and Alder, B. J. (1977). Phase separation for a dense fluid mixture of nuclei. Phys. Rev. A, 15, 1263–1268.
Pollock, E. L. and Hansen, J. P. (1973). Statistical mechanics of dense ionized matter. II. Equilibrium properties and melting transition of the crystallized one–component plasma. Phys. Rev. A, 8, 3110–3122.
Rajagopal, A. K. (1980). Theory of inhomogeneous electron systems: Spin– density–functional formalism. Adv. Chem. Phys., 41, 59–193.
Redmer, R. (1997). Physical properties of dense, low–temperature plasmas.
Phys. Rep., 282, 35–157.
Redmer, R., R¨opke, G., Kuhlbrodth, S., and Reinholz, H. (2001). Metal–non- metal transition in dense hydrogen. Contrib. Plasma Phys., 41, 163–166.
Reichlin, R., Brister, K. E., McMahan, A. K., Ross, M., Martin, S., Vohra, Y. K., and Ruo , A. L. (1989). Evidence for the insulator–metal transition in xenon from optical, X–ray, and band–structure studies to 170 GPa. Phys. Rev. Lett., 62, 669–672.
Rogers, F. J. and DeWitt, H. E. (1973). Statistical mechanics of reacting Coulomb gases. Phys. Rev. A, 8, 1061–1076.
Rosenfeld, Y. and Ashcroft, N. W. (1979). Theory of simple classical fluids: Universality in the short–range structure. Phys. Rev. A, 20, 1208–1235.
Ross, R. G. and Greenwood, D. A. (1971). Liquid metals and vapours under pressure. Progr. Mater. Sci., 14, 173.
Royce, E. B. (1967). Stability of the electronic configuration and compressibility of electron orbitals in metals under shock–wave compression. Phys. Rev., 164, 929.
Rusakov, M. M. (1975). Evaporative expansion after passage of an intense shock wave. High Temp., 13, 17–19.
Rusakov, M. M., Ivanov, R. I., Shaidulin, B. K., and Shpak, S. G. (1977). Features of the expansion of condensed substances acted on by high–power shock waves. High Temp., 15, 381–385.
Rushbrooke, G. S. (1968). Equilibrium theories of liquid state. In Physics of simple liquids, Temperley, H. N. V., Rowlinson, J. S., and Rushbrooke, G. S. (eds). North–Holland, Amsterdam.
Salpeter, E. E. (1954). Electron screening and thermonuclear reactions. Aust. J. Phys., 7, 373–396.
Saumon, D. and Chabrier, G. (1992). Fluid hydrogen at high density: Pressure ionization. Phys. Rev. A, 46, 2084–2100.
Savukinas, A. Y. and Chizhunas, A. R. (1974). E ect of screening and compression on atomic energy levels in plasma. Lithuanian Phys. Collection, 14,
246 THERMODYNAMICS OF PLASMAS WITH DEVELOPED IONIZATION
73–83.
Shaner, J. W. and Gathers, G. R. (1979). (unpublished). Shatzman, E. (1977). (private communication).
Shpatakovskaya G. V. (2000). Cell approach to description of thermodynamical properties. In Encyclopedia of Low Temperature Plasma. Introductory volume 1, Fortov, V. E. (ed.), pp. 313–322. Nauka, Moscow.
Simonenko, V. A., Voloshin, N. P., Vladimirov, A.S., Nagibin, A.P., Nogin, V.N., Popov, V.A., Vasilenko, V.A., and Shoidin, Y. A. (1985). Absolute measurements of shock compressibility of aluminum at pressures p ≥ 1 TPa. JETP, 61, 869–873.
Sin’ko, G. V. (1983). Use of the self–consistent field method for calculation of thermodynamical electron functions of simple matters. High Temp., 21, 1041– 1052.
Slattery, W. L., Doolen, G. D., and DeWitt, H. E. (1980). Improved equation of state for the classical one–component plasma. Phys. Rev. A, 21, 2087–2095.
Springer, J. F., Pokrant, M. A., and Stevens, F. A. (1973). Integral equation solutions for the classical electron gas. J. Chem. Phys., 58, 4863–4867.
Stevenson, D. J. (1975). Thermodynamics and phase separation of dense fully ionized hydrogen–helium fluid mixtures. Phys. Rev. B, 12, 3999–4007.
Stillinger, F. H. and Lovett, R. (1968). General restriction on the distribution of ions in electrolytes. J. Chem. Phys., 49, 1991–1994.
Stringfellow, G. S., DeWitt, H. E., and Slattery, W. L. (1990). Equation of state of the one–component plasma derived from precision Monte Carlo calculations. Phys. Rev. A, 41, 1105–1111.
Ternovoi, V. Y., Filimonov, A. S., Fortov, V. E., Kvitov, S. V., Nikolaev, D. N., and Pyalling, A. A. (1999). Thermodynamic properties and electrical conductivity of hydrogen under multiple shock compression to 150 GPa. Physica B, 265, 6–11.
Trunin, R. F., Podurets, M. A., Moiseev, B.N., Simakov, G. B., and Popov, L.V. (1969). Relative compressibility of copper, cadmium, and lead at high pressures. JETP, 29, 630–631.
Tsidil’kovskii, I. M. (1987). Crystallization of a three–dimensional electron gas.
Phys. Uspekhi, 30, 676–698.
Vladimirov, A. S., Voloshin, N. P., Nogin, V.N., Petrovtsev, A. V., and Simonenko, V. A. (1984). Shock compressibility of aluminum at p ≥ 1 Gbar. JETP Lett., 39, 82–5.
Volkov, L. P., Voloshin, N. P., Mangasarov, R. A., Simonenko, V. A., Sin’ko, G. V., and Sorokin, V. L. (1980). Shock compressibility of water at pressure of 1 Mbar. JETP Lett., 31, 513–515.
Vorob’ev, V. S. (2000). Asymptotic methods of description of low temperature plasma thermodynamics. In Encyclopedia of Low Temperature Plasma. Introductory volume 1, Fortov, V. E. (ed.), pp. 293–299. Nauka, Moscow.
Weir, S. T., Mitchell, A. C., and Nellis, W. J. (1996). Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76, 1860–1863.
REFERENCES |
247 |
Wigner, E. P. (1934). On the interactions of electrons in metals. Phys. Rev., 46, 1002–1011.
Xu, H. and Hansen, J. P. (1998). Density–functional theory of pair correlations in metallic hydrogen. Phys. Rev. E, 57, 211–223.
Zamalin, V. M. and Norman, G. E. (1973). The Monte Carlo method in Feynman’s formulation of quantum statistics. USSR Computational Mathematics and Mathematical Physics, 13, 169–183.
Zamalin, V. M., Norman, G. E., and Filinov, V. S. (1977). Monte Carlo method in statistical physics. Nauka, Moscow.
Zel’dovich, Y. B. and Landau, L. D. (1944). On correlation between liquid and gaseous states of metals. Acta Phys.–Chim. USSR, 18, 194–198.
Zelener, V. B., Norman, G. E., and Filinov, V. S. (1981). Perturbation theory and pseudopotential in statistical thermodynamics. Nauka, Moscow.
