
- •Preface
- •Contents
- •1 Nonideal plasma. Basic concepts
- •1.1 Interparticle interactions. Criteria of nonideality
- •1.1.1 Interparticle interactions
- •1.1.2 Coulomb interaction. Nonideality parameter
- •1.1.4 Compound particles in plasma
- •1.2.2 Metal plasma
- •1.2.3 Plasma of hydrogen and inert gases
- •1.2.4 Plasma with multiply charged ions
- •1.2.5 Dusty plasmas
- •1.2.6 Nonneutral plasmas
- •References
- •2.1 Plasma heating in furnaces
- •2.1.1 Measurement of electrical conductivity and thermoelectromotive force
- •2.1.2 Optical absorption measurements.
- •2.1.3 Density measurements.
- •2.1.4 Sound velocity measurements
- •2.2 Isobaric Joule heating
- •2.2.1 Isobaric heating in a capillary
- •2.2.2 Exploding wire method
- •2.3 High–pressure electric discharges
- •References
- •3.1 The principles of dynamic generation and diagnostics of plasma
- •3.2 Dynamic compression of the cesium plasma
- •3.3 Compression of inert gases by powerful shock waves
- •3.4 Isentropic expansion of shock–compressed metals
- •3.5 Generation of superdense plasma in shock waves
- •References
- •4 Ionization equilibrium and thermodynamic properties of weakly ionized plasmas
- •4.1 Partly ionized plasma
- •4.2 Anomalous properties of a metal plasma
- •4.2.1 Physical properties of metal plasma
- •4.2.2 Lowering of the ionization potential
- •4.2.3 Charged clusters
- •4.2.4 Thermodynamics of multiparticle clusters
- •4.3 Lowering of ionization potential and cluster ions in weakly nonideal plasmas
- •4.3.1 Interaction between charged particles and neutrals
- •4.3.2 Molecular and cluster ions
- •4.3.3 Ionization equilibrium in alkali metal plasma
- •4.4 Droplet model of nonideal plasma of metal vapors. Anomalously high electrical conductivity
- •4.4.1 Droplet model of nonideal plasma
- •4.4.2 Ionization equilibrium
- •4.4.3 Calculation of the plasma composition
- •4.5 Metallization of plasma
- •4.5.3 Phase transition in metals
- •References
- •5.1.1 Monte Carlo method
- •5.1.2 Results of calculation
- •5.1.4 Wigner crystallization
- •5.1.5 Integral equations
- •5.1.6 Polarization of compensating background
- •5.1.7 Charge density waves
- •5.1.8 Sum rules
- •5.1.9 Asymptotic expressions
- •5.1.10 OCP ion mixture
- •5.2 Multicomponent plasma. Results of the perturbation theory
- •5.3 Pseudopotential models. Monte Carlo calculations
- •5.3.1 Choice of pseudopotential
- •5.5 Quasiclassical approximation
- •5.6 Density functional method
- •5.7 Quantum Monte Carlo method
- •5.8 Comparison with experiments
- •5.9 On phase transitions in nonideal plasmas
- •References
- •6.1 Electrical conductivity of ideal partially ionized plasma
- •6.1.1 Electrical conductivity of weakly ionized plasma
- •6.2 Electrical conductivity of weakly nonideal plasma
- •6.3 Electrical conductivity of nonideal weakly ionized plasma
- •6.3.1 The density of electron states
- •6.3.2 Electron mobility and electrical conductivity
- •References
- •7 Electrical conductivity of fully ionized plasma
- •7.1 Kinetic equations and the results of asymptotic theories
- •7.2 Electrical conductivity measurement results
- •References
- •8 The optical properties of dense plasma
- •8.1 Optical properties
- •8.2 Basic radiation processes in rarefied atomic plasma
- •8.5 The principle of spectroscopic stability
- •8.6 Continuous spectra of strongly nonideal plasma
- •References
- •9 Metallization of nonideal plasmas
- •9.1 Multiple shock wave compression of condensed dielectrics
- •9.1.1 Planar geometry
- •9.1.2 Cylindrical geometry
- •9.3 Metallization of dielectrics
- •9.3.1 Hydrogen
- •9.3.2 Inert gases
- •9.3.3 Oxygen
- •9.3.4 Sulfur
- •9.3.5 Fullerene
- •9.3.6 Water
- •9.3.7 Dielectrization of metals
- •9.4 Ionization by pressure
- •References
- •10 Nonneutral plasmas
- •10.1.1 Electrons on a surface of liquid He
- •10.1.2 Penning trap
- •10.1.3 Linear Paul trap
- •10.1.4 Storage ring
- •10.2 Strong coupling and Wigner crystallization
- •10.3 Melting of mesoscopic crystals
- •10.4 Coulomb clusters
- •References
- •11 Dusty plasmas
- •11.1 Introduction
- •11.2 Elementary processes in dusty plasmas
- •11.2.1 Charging of dust particles in plasmas (theory)
- •11.2.2 Electrostatic potential around a dust particle
- •11.2.3 Main forces acting on dust particles in plasmas
- •11.2.4 Interaction between dust particles in plasmas
- •11.2.5 Experimental determination of the interaction potential
- •11.2.6 Formation and growth of dust particles
- •11.3 Strongly coupled dusty plasmas and phase transitions
- •11.3.1 Theoretical approaches
- •11.3.2 Experimental investigation of phase transitions in dusty plasmas
- •11.3.3 Dust clusters in plasmas
- •11.4 Oscillations, waves, and instabilities in dusty plasmas
- •11.4.1 Oscillations of individual particles in a sheath region of gas discharges
- •11.4.2 Linear waves and instabilities in weakly coupled dusty plasmas
- •11.4.3 Waves in strongly coupled dusty plasmas
- •11.4.4 Experimental investigation of wave phenomena in dusty plasmas
- •11.5 New directions in experimental research
- •11.5.1 Investigations of dusty plasmas under microgravity conditions
- •11.5.2 External perturbations
- •11.5.3 Dusty plasma of strongly asymmetric particles
- •11.5.4 Dusty plasma at cryogenic temperatures
- •11.5.5 Possible applications of dusty plasmas
- •11.6 Conclusions
- •References
- •Index
118 DYNAMIC METHODS IN THE PHYSICS OF NONIDEAL PLASMA
References
Ageev, V. G., Bushman, A. V., Kulish, M. I., Lebedev, M. E., Leont’ev, A. A., Ternovoi, V. Y., Filimonov, A. S., and Fortov, V. E. (1988). Thermodynamics of a dense lead plasma near the high–temperature boiling curve. JETP Lett., 48, 659–663.
Akkerman, A. F., Demidov, B. A., Fortov, V. E., et al. (1986a). Application of the heavy–current relativistic electron beams in dynamic physics of high temperatures and pressures. Joint institute of chemical physics, Chernogolovka.
Akkerman, A. F., Bushman, A. V., Demidov, B. A., Zavgorodnii, S. F., Ivkin, M. V., Ni, A. L., Petrov, V. A., Rudakov, L. I., and Fortov, V. E. (1986b). E ect of size of energy absorption zone on the characteristics of shock waves exited by strong relativistic electron beam in a metallic target. JETP, 64, 1043–1045.
Alekseev, Y. L., Ratnikov, V. P., and Rybakov, A. P. (1971). Shock wave adiabats of porous metals. J. Appl. Mech. Techn.Phys., 12, No. 2, 101–106.
Altshuler, L. V. (1965). Use of shock waves in high–pressure physics. Sov. Phys. Uspekhi, 8, 55–91.
Altshuler, L. V., Moiseev, B. P., Simakov, G. V., and Trunin, R. F. (1968). Relative compressibility of iron and lead at pressures of 31 to 34 Mbar. JETP, 27, 420–422.
Altshuler, L. V., Bakanova, A. A., Bushman, A. V., Dudoladov, I. P., and Zubarev, V. N. (1977). Evaporation of shock–compressed lead in release waves. JETP, 46, 980–983.
Altshuler, L. V., Bushman, A. V., Zhernokletov, M. V., Zubarev, V. N., Leontiev, A. A., and Fortov, V. E. (1980). Release isentropes and the equation of state of metals at high energy densities. JETP, 51, 373–383.
Anisimov, S. I., Prokhorov, A. M., and Fortov, V. E. (1984). Application of high–power lasers to study matter at ultrahigh pressures. Sov. Phys. Uspekhi, 27, 181–205.
Asay, J. R., Chhabildas, L. C., Kerley, G. I., and Trucano, T. G. (1987). High pressure strength of shocked aluminum. In Shock waves in condensed matter, Shmidt, S. C. and Holmes, N. C. (eds), pp. 145–149. Elsevier, New York.
Avrorin, E. N., Vodolaga, B. K., Voloshin, N. P., Kovalenko, G. V., Kuropatenko, V. F., Simonenko, V. A., and Chernovolyuk, B. T. (1987). Experimental study of the influence of electron shell structure on shock adiabats of condensed materials. JETP, 66, 347–354.
Avrorin, E. N., Vodolaga, B. K., Simonenko, V. A., et al. (1990). Intense shock waves and extremal states of matter. IVTAN, Moscow.
Bazanov, O. V., Bespalov, V. E., Zharkov, A. N., Rumyantsev, B. V., Fedotova, T. B., Fortov, V. E., and Misonochikov, A. L. (1985). Irregular reflection of conically converging shock waves in plexiglas and copper. High Temp., 23, 976–982.
Bespalov, V. E., Gryaznov, V. K., Dremin, A. N., and Fortov, V. E. (1975). Dynamic compression of nonideal argon plasma. JETP, 42, 1046–1049.
REFERENCES |
119 |
Bespalov, V. E., D’yachkov, L. G., Kobzev, G. A., and Fortov, V. E. (1979a). Radiation from high–pressure air plasmas. High Temp., 17, 226–231.
Bespalov, V. E., Gryaznov, V. K., and Fortov, V. E. (1979b). Radiation emitted by a shock–compressed high–pressure argon plasma. JETP, 49, 71–75.
Bespalov, V. E., Kulish, M. I., and Fortov, V. E. (1986). Shift of spectral lines of argon in nonideal plasma. High Temp., 24, 995–997.
Bogolyubskii, S. L., Gerasimov, B. P., Liksonov, V. I., Popov, Y. P., Rudakov, L. I., Samarskii, A. A., Smirnov, V. P., and Urutskoev, L. I. (1976). Heating of thin foils by a large–current electron beam. JETP Lett., 24, 178–181.
Bondarenko, Y. A., Burdonskii, I. N., Gavrilov, V. V., ZhuZhukalo, E. V., Koval’skii, A. N., Kondrashov, V. N., Mkhitar’yan, L. S., Pergament, M. I., and Yaroslavskii, A. I. (1981). Experimental study of the acceleration of thin foils by high–power laser pulses. JETP, 54, 85–89.
Burnett, N. H., Josin, G., Ahlborn, B., and Evans, R. (1981). Generation of shock waves by hot electron explosions driven by a CO2 laser. Appl. Phys. Lett., 38, 226–228.
Bushman, A. V. and Fortov, V. E. (1983). Model equations of state. Phys. Uspekhi, 26, 465–496.
Bushman, A. V. and Fortov, V. E. (1988). Wide–range equation of state for matter under extreme conditions. Sov. Tech. Rev. B. Therm. Phys., 1, 162– 181.
Bushman, A. V., Lomakin, B. N., Sechenov, V. A., and Sharipdzhanov, I. I. (1975). Thermodynamics of nonideal cesium plasma. JETP, 42, 828–831.
Bushman, A. V., Krasyuk, I. K., Pashinin, P. P., Prokhorov, A. M., Ternovoi, V. Y., and Fortov, V. E. (1984). Dynamic compressibility and thermodynamics of a dense aluminum plasma at megabar pressures. JETP Lett., 39, 411–413.
Bushman, A. V., Glushak, B. L., Gryaznov, V. K., Zhernokletov, M. V., Krasyuk, I. K., Pashinin, P. P., Prokhorov, A. M., Ternovoi, V. Y., Filimonov, A. S., and Fortov, V. E. (1986a). Shock compression and adiabatic decompression of a dense bismuth plasma at extreme thermal energy densities. JETP Lett., 44, 480–483.
Bushman, A. V., Glushak, B. L., Gryaznov, V. K., Zhernokletov, M. V., Krasyuk, I. K., Pashinin, P. P., Prokhorov, A. M., Ternovoi, V. Y., Filimonov, A. S., and Fortov, V. E. (1986b). Shock compression and adiabatic unloading of a dense plasma of bismuth at extremal concentrations of thermal energy.
Joint Institute of Chemical Physics, Chernogolovka.
Bushman, A. V., Vorob’ev, O. Y., and Fortov, V. E. et al. (1987). Computational modelling of the action of a strong ion beam on metal targets. Joint Institute of Chemical Physics, Chernogolovka.
Bushman, A. V., Kanel’, A. V., Ni, A. L., et al. (1988). Thermophysics and dynamics of intense pulse actions. Joint Institute of Chemical Physics, Chernogolovka.
Christian, R. H. and Yarger, F. L. (1955). Equation of state of gases by shock wave experiments. 1. Experimental method and the Hugoniot of argon. J.
120 DYNAMIC METHODS IN THE PHYSICS OF NONIDEAL PLASMA
Chem. Phys., 33, 2042–2044.
Davison, L. and Graham, R. A. (1979). Shock compression of solids. Phys. Rep., 55, 255–379.
de Beaumont, P. and Leygonie, L. J. (1970). Vaporization of uranium after shock loading. In Proceedings of the 5th International Symposium on Detonation. Pasadena, pp. 430–442.
Deal, W. E. (1957). Shock Hugoniot of air. J. Appl. Phys., 28, 782–794. Demidov, B. A. and Martynov, A. I. (1981). Experimental investigation of shock
waves excited in metals by an intense relativistic electron beam. JETP, 53, 374–377.
Duderstadt, J. J. (1982). Inertial confinement fusion. Wiley, New York. Duvall, G. E. and Graham, R. A. (1977). Phase transitions under shock–wave
loading. Rev. Mod. Phys., 49, 523–579.
Ebeling, W., Kreft, W. D., and Kremp, D. (1976). Theory of bound states and ionization equilibrium in plasmas and solids. Akademie–Verlag, Berlin.
Ebeling, W., F¨orster, A., Fortov, V., Gryaznov, V., and Polishchuk, A. (1991).
Thermophysical properties of hot dense plasmas. Teubner, Stuttgart–Leipzig. Fortov, V. E. (1972a). Calorific equation of state of silicon oxide and silicone
fluid. Comb., Expl., Shock Waves, 8, 428–433.
Fortov, V. E. (1972b). Equations of state of condensed matters. J. Appl. Mech. Techn. Phys., 13, No. 6, 156–166.
Fortov, V. E. (1982). Dynamic methods in plasma physics. Sov. Phys. Uspekhi, 25, 781–809.
Fortov, V. E. and Dremin, A. N. (1973). Determination of temperature of shock– compressed cooper by measuring of parameters in release wave. Comb., Expl., Shock Waves, 9, 743–781.
Fortov, V. E. and Krasnikov, Yu. G. (1970). Construction of a thermodynamically complete equation of state of a nonideal plasma by means of dynamic experiments. JETP, 32, 897–902.
Fortov, V. E. and Leont’ev, A. A. (1976). Kinetics of vaporization and condensation with isentropic expansion of metals. High Temp., 14, 634–639.
Fortov, V. E., Leont’ev, A. A., Dremin, A. N., and Pershin, S. V. (1974). Isentropic expansion of shock–compressed lead. JETP Lett., 20, 13–14.
Fortov, V. E., Dremin, A. N., and Leont’ev, A. A. (1975b). Evaluation of the parameters of the critical point. High Temp., 13, 984–992.
Fortov, V. E., Ivanov, Yu. V., Dremin, A. N., Gryaznov, V. K., and Bespalov, V. E. (1975a). Explosive generator of nonideal plasma. DAN USSR, 221, 1307– 1309.
Fortov, V. E., Leont’ev, A. A., Dremin, A. N., and Gryaznov, V. K. (1976). Shock–wave production of a nonideal plasma. JETP, 44, 116–122.
Froshner, K. F. and Lee, R. S. (1984). (private communication).
Gathers, G. R., Shaner, J. W., and Hodson, W. M. (1979). Thermodynamic characterization of liquid metals at high temperature by isobaric expansion measurements. High Temp.–High Press., 11, 529–538.
REFERENCES |
121 |
Glushak, B. L., Zharkov, A. N., Zhernokletov, M. V., Ternovoi, V. Y., Filimonov, A. S., and Fortov, V. E. (1989). Experimental investigation of the thermodynamics of dense plasma formed from metals at high energy concentrations. JETP, 69, 739–749.
Gryaznov, V. K., Iosilevskii, I. L., and Fortov, V. E. (1973). Calculation of shock adiabats of argon and xenon. J. Appl. Mech. Techn. Phys., 14, No. 3, 70–76.
Gryaznov, V. K., Zhernokletov, M. V., Zubarev, V. N., Iosilevskii, I. L., and Fortov, V. E. (1980). Thermodynamic properties of a nonideal argon or xenon plasma. JETP, 51, 288–295.
Hall, T. A., Djaoui, A., Eason, R. W., Jackson, C. L., Shiwai, B., Rose, S. L., Cole, A., and Apte, P. (1988). Experimental observation of ion correlation in a dense laser–produced plasma. Phys. Rev. Lett., 60, 2034–2037 .
Hess, H. (1989). (private communication).
Hornung, K. and Michel, K. W. (1972). Equation–of–state data of solids from shock vaporization. J. Chem. Phys., 56, 2072–2078.
Iakubov, I. T. (1977). Thermal instability of nonideal current–carrying plasmas of metal vapors. Beitr. Plasma Phys., 17, 221–227.
Ikezi, H., Schwarzenegger, K., Simons, A. L., Passner A. L., and McCall, S. L. (1978). Optical–properties of expanded fluid mercury. Phys. Rev. B, 18, 2494–2499.
Ivanov, Y. V., Mintsev, V. B., Fortov, V. E., and Dremin, A. N. (1976). Electric conductivity of nonideal plasma. JETP, 44, 112–116.
Keeler, R. N., van Thiel, M., and Alder, B. J. (1965). Corresponding states at small interatomic distances. Physica, 31, 1437–1440.
Kerley, G. I. and Wise, J. L. (1987). Shock-induced vaporization of porous aluminum. In Shock waves in condensed matter. Shmidt, S. C. and Holmes, N. C. (eds), pp. 155–158. Elsever, New York.
Kirzhnits, D. A., Lozovik, Y. E., and Shpatakovskaya, G. V. (1975). Statistical model of matter. Sov. Phys. Uspekhi, 18, 3–48.
Kondratenko, M. M., Lebedev, U. F., Ostashev, V. E., Safonov, V. I., Fortov, V. E., Ul’yanov, A. V. (1988). Experimental investigation of magneto–plasma acceleration of a dielectric plunger in a railotron. High Temp., 26, 159–164.
Kormer, S. B. (1968). Optical study of the characteristics of shock–compressed condensed dielectrics. Sov. Phys. Uspekhi, 11, 229–254.
Kormer, S. B., Urlin, V. D. and Popova, L. T. (1961). Interpolation equation of state and its application to description experimental data on shock compression of metals. Phys. Solid State, 3, 2131–2141.
Kormer, S. B., Funtikov, L. I., Urlin, V. D., and Kolesnikova, A. N. (1962). Dynamic compression of porous metals and the equation of state with variable specific heat at high temperatures. JETP, 42, 686–702.
Kunavin, A. G., Kirillin, A. V., and Korshunov, Y. S. (1974). Investigation of cesium plasma by method of adiabatic compression. High Temp., 12, 1302– 1305.
122 DYNAMIC METHODS IN THE PHYSICS OF NONIDEAL PLASMA
Leont’ev, A. A. and Fortov, V. E. (1974). About wave of melting and evaporation of metals in release wave. J. Appl. Mech. Techn. Phys., 15, No. 3, 162–167.
Leont’ev, A. A., Fortov, V. E., and Dremin, A. N. (1977). Combustion and explosion. Nauka, Moscow.
Lepouter, M. (1965). Metal ammonia solutions. Academic Press, New York. Likal’ter, A. A. (2000). Critical points of condensation in Coulomb systems.
Phys. Uspekhi, 43, 777–797.
Lomakin, B. N. and Fortov, V. E. (1973). Equation of state of a nonideal cesium plasma. JETP, 36, 48–53.
Lomakin, B. N. and Lopatin, A. D. (1983). Electrical conductivity of compressed vapors of cesium and potassium. High Temp., 21, 190–193.
Lysne, P. C. and Hardesty, D. R. (1973). Fundamental equation of state of liquid nitromethane to 100 kbar. J. Chem. Phys., 59, 6512–6523.
Manzon, B. M. (1981). Acceleration of macro–particles for controlled fusion.
Sov. Phys. Uspekhi, 24, 611–614.
Minaev, V.N. and Ivanov, A. G. (1976). Electromotive force produced by shock compression of a substance. Sov. Phys. Uspekhi, 19, 400–419.
Mintsev, V. B. and Fortov, V. E. (1979). Electric conductivity of xenon under supercritical conditions. JETP Lett., 30, 375–378.
Mintsev, V. B., Fortov, V. E., and Gryaznov, V. K. (1980). Electric conductivity of a high–temperature nonideal plasma. JETP, 52, 59–63.
Model’, I. T. (1957). Measurement of high temperatures in strong shock waves in gases. JETP, 32, 589–601.
Model’, I. S., Narozhnyi, A. T., Kharchenko, A. T., Kholin, S. A., and Khrustalev, V. V. (1985). Equation of state for graphite, aluminum, titanium, and iron at pressures > 13 Mbar. JETP Lett., 41, 332–334.
More, R. M. (1981). Laser–driven shockwave at extreme high pressures. In Laser interaction and related plasma phenomena. Vol. 5, Schwarz, H. J., Hora, H., Lubin, M. J., and Yaakobi, B. (eds), pp. 253–277. Plenum, New York.
Nellis, W. J., Ross, M., Mitchell, A. C., van Thiel, M., Young, D. A., Ree, F. H., and Trainor, R. J. (1983). Equation of state of molecular hydrogen and deuterium from shock–wave experiments to 760 kbar. Phys. Rev. A, 27, 608–611.
Nellis, W. J., van Thiel, M., and Mitchell, A. C. (1982). Shock compression of liquid xenon to 130 GPa (1.3 Mbar). Phys. Rev. Lett., 48, 816–818.
Ng, A., Parfeniuk, D., and DaSilva, L. (1985). Hugoniot measurements for laser– generated shock waves in aluminum. Phys. Rev. Lett., 54, 2604–2607.
Ng, A., Parfeniuk, D., and Celliers, P., DaSilva, L., More, R. M., and Lee, Y. T. (1986). Electrical conductivity of a dense plasma. Phys. Rev. Lett., 57, 1595–1598.
Perry, F. C. and Widner, M. M. (1976). Energy deposition of superpinched relativistic electron beams in aluminum targets. J. Appl. Phys., 47, 127–134.
Pfeifer, H. P., Freyland, W. F., and Hensel, F. (1973). Absolute thermoelectric
REFERENCES |
123 |
power of fluid cesium in metal–nonmetal transition range. Phys. Lett. A, 43, 111–112.
Prokhorov, A. M., Anisimov, S. I., and Pashinin, P. P. (1976). Laser thermonuclear fusion. Sov. Phys. Uspekhi, 19, 547–560.
Ragan, C. E., Silbert, M. G., and Diven, B. C. (1977). Shock compression of molybdenum to 2.0 TPa by means of a nuclear explosion. J. Appl. Phys., 48, 2860–2870.
Rashleigh, S. C. and Marshall, R. A. (1978). Electromagnetic acceleration of macroparticles to high velocities. J. Appl. Phys., 49, 2540–2542.
Roman, J. P., Cottete, F., Hallouin, M., Fabbro, R., and Perin, H. (1986). Laser shock experiments at pressures above 100 Mbar. Physica B, 139, 595–598.
Rosen, M. D., Phillipson, D. W., Price, R. H., Campbell, E. M., Obenschain, S. P., Whitlock, R. R., McLean, E. A., and Ripin, B. H. (1984). Creation of ultra high pressure shocks by the collision of laser accelerated disks: Experiment and theory. In Shock waves in condensed matter–83, Asay, J. R., Graham, R. A., and Straub, G. K. (eds), pp. 323–326. Elsever, New York.
Ross, M., Nellis, W., and Mitchell, A. (1979). Shock–wave compression of liquid argon to 910 kbar. Chem. Phys. Lett., 68, 532–536.
Ryabinin, Y. N. (1959). Gases at high densities and high temperatures. Fizmatgiz, Moscow.
Scidmore, C. and Morris, E. (1962). (unpublished).
Sechenov, V. A., Son, E. E., and Shchekotov, O. E. (1977). Electrical conductivity of a cesium plasma. High Temp., 15, 346–349.
Shaner, J. W. and Gathers, G. R. (1979). (unpublished). Shatzman, E. (1977). (private communication).
Simonenko, V. A., Voloshin, N. P., Vladimirov, A. S., Nagibin, A. P., Nogin, V. N., Popov, V. A., Vasilenko, V. A., and Shoidin, Y. A. (1985). Absolute measurements of shock compressibility of aluminum at pressures p ≥ 1 TPa. JETP, 61, 869–873.
Thom, K. and Schneider, R. T. (eds). (1971). Research of uranium plasmas and their technological applications. NASA, Washington.
Tkachenko, B. K., Titarov, S. I., Karasev, A. B. and Alipov, S. V. (1976). Experimental determination of parameters behind strong reflected shock waves in air. Comb., Expl., Shock Waves, 12, 763–768.
Trainor, R. J., Graboske, M. C., and Long, K. S. (1978). (unpublished). Trainor, R. J., Holmes, N. C., and Anderson, R. A. (1982). Ultrahigh pressure
laser–driven shock wave experiments. In Shock waves in condensed matter– 81. Nellis, W. J., Seaman, L., and Grolham, R. A. (eds), pp. 145–149. North Holland, New York.
Trainor, R. J., Shaner, J. W., Auerbach, J. M., and Holmes, N. C. (1979). Ultrahigh–pressure laser–driven shock–wave experiments in aluminum. Phys. Rev. Lett., 42, 1154–1157.
Trunin, R. F., Podurets, M. A., Moiseev, B. N., Simakov, G. B., and Popov, L. V. (1969). Relative compressibility of copper, cadmium, and lead at high
124 DYNAMIC METHODS IN THE PHYSICS OF NONIDEAL PLASMA
pressures. JETP, 29, 630–631.
Trunin, R. F., Podurets, M. A., Simakov, G. B., Popov, L. V., and Moiseev, B. N. (1972). An experimental verification of the Thomas–Fermi model for metals under high pressure. JETP, 35, 500–552.
Tsukulin, M. A. and Popov, E. G. (1977). Radiative properties of shock waves in gases. Nauka, Moscow.
Van Kessel, C. G. M. and Sigel, R. (1974). Observation of laser–driven shock waves in solid hydrogen. Phys. Rev. Lett., 33, 1020–1023.
Veeser, L. R. and Solem, J. C. (1978). Studies of laser–driven shock waves in aluminum. Phys. Rev. Lett., 40, 1391–1394.
Vladimirov, A. S., Voloshin, N. P., Nogin, V. N., Petrovtsev, A. V., and Simonenko, V. A. (1984). Shock compressibility of aluminum at p ≥ 1 Gbar. JETP Lett., 39, 82–85.
Volkov, L. P., Voloshin, N. P., Mangasarov, R. A., Simonenko, V. A., Sin’ko, G. V., and Sorokin, V. L. (1980a). Shock compressibility of water at pressure of 1 Mbar. JETP Lett., 31, 513–515.
Volkov, L. P., Voloshin, N. P., Vladimirov, A. S., Nogin, V. N., and Simonenko, V. A. (1980b). Shock compressibility of aluminum at pressure of 10 Mbar. JETP Lett., 31, 588–592.
Volkov, V. A., Titarov, S. I., and Tkachenko, B. K. (1978). Study of argon at high particle concentrations. High Temp., 16, 342–344.
Zababakhin, E. I. (1970). Unbounded cumulation e ects. In Mechanics in USSR for 50 years. Nauka, Moscow.
Zaporozhets, Yu. B., Mintsev, V. B., and Fortov, V. E. (1987). Creation of the metal phase during compression of silicon by shock waves. JTP Lett., 13, 204–207.
Zel’dovich, Y. B. and Raizer, Y. P. (1966). Physics of shock waves and high– temperature hydrodynamic phenomena. Academic Press, Dover–New York.
Zhernokletov, M. V., Zubarev, V. N., Sutulov, Y. N. (1984). Adiabats of porous samples and isentropes of expansion of continuum matter. J. Appl. Mech. Techn. Phys., 25, No. 1, 119–123.