
- •Раздел 1 «Основные принципы спутниковых измерений» 3
- •Раздел 2 Методы определения местоположения, измерений и вычислений в спутниковых системах 10
- •Раздел 3 Системы координат 32
- •Раздел 4 Проектирование и предварительная обработка измерений 72
- •Раздел 5 Обработка спутниковых наблюдений 72
- •Конспекты лекций
- •Предмет и задачи дисциплины спутниковая геодезия.
- •Раздел 1 «Основные принципы спутниковых измерений» Особенности геодезических измерений.
- •Принципы измерения в спутниковой геодезии Принципы измерения длин линий в спутниковой геодезии
- •Общие принципы построения глобальных систем позиционирования
- •Космический сектор
- •Сектор управления и контроля (кратко о функциях) Сектор потребителя
- •Раздел 2 Методы определения местоположения, измерений и вычислений в спутниковых системах Геометрическая сущность местоопределения.
- •Разновидности методов определения местоположения
- •Концептуальная основа дифференциальных и относительных методов определения местоположения
- •Разновидности методов измерений
- •Разновидности обработки измерений
- •Аналитические решения спутниковых наблюдений с использованием математической модели Обобщенная математическая модель задачи пространственного определения спутниковыми методами
- •Линеаризация функции геометрической дальности
- •Практикуемая математическая модель пространственной засечки
- •Методы определения местоположения с использованием математической модели Абсолютный метод (точечное позиционирование)
- •Позиционирование по кодовым псевдодальностям.
- •Позиционирование по фазе несущих колебаний.
- •Дифференциальный метод
- •Относительный метод
- •Задача разрешение неоднозначности
- •Системы дифференциального определения местоположения
- •Раздел 3 Системы координат
- •Системы координат
- •Небесные системы координат
- •Горизонтальная система координат
- •Первая экваториальная система координат
- •Вторая экваториальная система координат
- •Прямоугольные и геодезические общеземные системы координат.
- •Общеземная система координат.
- •Связь координат в общеземной и истинной небесной системе.
- •Взаимосвязь систем координат
- •Реализация общеземных систем координат.
- •Общеземной эллипсоид grs80
- •Геоцентрическая координатная система wgs-84.
- •Система координат пз-90
- •Референцные системы координат Система координат ск-95 и ск-42
- •Система координат 1963 г.
- •Правила установления местных систем координат
- •Общие сведения о единой координатной основы России
- •Развитие координатной основы России и ее современное состояние
- •Функции времени в спутниковых технологиях.
- •Время при связи земных и небесных систем отсчёта.
- •Интегралы орбитального движения
- •Элементы орбиты и законы Кеплера. Основные формулы невозмущённого движения.
- •Вычисление положения и скорости спутника по Кеплеровым элементам орбиты.
- •Раздел 4 Проектирование и предварительная обработка измерений
- •Раздел 5 Обработка спутниковых наблюдений
- •Задание: Определение координат дифференциальным методом gps
Прямоугольные и геодезические общеземные системы координат.
Система общеземных геоцентрических прямоугольных координат, фиксированная по отношению к Земле, определяется следующим образом:
-
Начало в центре масс Земли.
-
Ось Z проходит через УЗП.
-
Ось Х проходит через точку G пересечения плоскости экватора и начального меридиана, определяемого как начальный меридиан для счёта долгот совокупности станций, реализующих координатную систему.
-
Ось У находится в экваториальной плоскости и дополняет систему до правой.
Для обозначения этой системы могут встречаться такие названия как «общеземная система» или «средняя земная система». Последний термин указывает на использование некоторого среднего земного полюса, каковыми являются и УЗП, и МУН.
Земные геоцентрические системы реализуются в виде геодезических сетей, построенных методами космической геодезии (или с обязательным применением методов космической геодезии). Пункты таких сетей распределены по всему земному шару или по значительной его части. Чем более точны положения этих точек, тем меньше остаточные ошибки, и более точна реализация координатной системы.
В понятие земной геоцентрической системы входят не только координаты пунктов, которые закрепляют данную систему на местности, но и ряд других параметров, характеризующих её. В первую очередь это параметры земного эллипсоида, определяющие размеры и форму Земли. Для построения эллипсоида используют два главных параметра: экваториальный радиус а и сжатие α. Остальные параметры, определяющие размеры и форму эллипсоида можно вычислить по этим двум параметрам.
Из других параметров нужно указать параметры, представляющие гравитационное поле Земли, параметры связи с другими системами координат, число которых может достигать многих тысяч. Поэтому, когда говорят о современной геоцентрической системе координат (или системе отсчёта) подразумевается система геодезических параметров Земли.
Все геоцентрические системы связаны с определёнными эллипсоидами, названия которых обычно совпадают с названием самой системы. В этом случае возможно использование не только декартовых, но и эллипсоидальных (сфероидических) координат: геодезической широты В, геодезической долготы L и высоты над эллипсоидом Н. Для определения геодезических координат из точки А проводится нормаль к эллипсоиду АС. Геодезической широтой В называют угол между нормалью и плоскостью экватора эллипсоида, а геодезической долготой L – угол, отсчитываемый против часовой стрелки от начального меридиана до меридиана пункта
Общеземная система координат.
Постоянно повышающаяся точность методов космических наблюдений требует соответствующего повышения точности установления координатных систем. Международная служба вращения Земли и референцных систем (МСВЗ) выделяет
-
Теоретические системы для которых даются концепция системы, фундаментальная теория и стандарты.
-
Практические реализации этих систем через наборы координат точек.
Для теоретических систем применяется термин Terrestrial Reference System (TRS), то есть земная система отсчёта. Концепции таких систем были разработаны астрономами и геодезистами в конце 1980-х годов. Системы второго рода называют Terrestrial Reference Frame (TRF) – земная отсчётная основа.
Земная отсчётная основа TRF – это набор физических точек с точно определёнными координатами в некоторой координатной системе (декартовой, эллипсоидальной, картографической). Линии, соединяющие пункты TRF, образуют в теле Земли каркас (слово «frame» может переводиться как «каркас»), жёстко связанный с земной корой.
В настоящее время отсчётные основы ITRF являются наиболее точными реализациями общеземных систем. Название ITRFyy расшифровывается как International Terrestrial Reference Frame – Международная земная отсчётная основа (или каркас), уу – две последние цифры года образования системы.
По форме общеземная система координат может быть эллиптической (B, L, H) и пространственной прямоугольной (Х, Н, Н). Переход между ними выполняется по известным формулам. В космической геодезии более удобна прямоугольная.
Каталоги координат обновляют и указывают их эпоху, например ITRF-94. Сеть 1994 г. содержит 150 пунктов, расположенных на всех материках и островах всех океанов.
Данная система принята Международным астрономическим союзом (МАС) в 1991 году.
В настоящее время отсчетные основы ITRF являются наиболее точными реализациями общеземных систем. Название ITRFyy расшифровывается как International Terrestrial Reference Frame - Международная земная отсчетная основа (или каркас), уу - две последние цифры года образования системы. Вывод ITRF основан на объединении координат более чем 200 станций МСВЗ и их скоростей движения, полученных по данным наблюдений РСДБ, лазерной локации Луны и искусственных спутников Земли, GPS (с 1991 г.), доплеровской орбитографической радиопозиционной интегрированной спутниковой системы DORIS (с 1994 г.) и микроволновой спутниковой системы PRARE (IERS, 1996).
Системы ITRS удовлетворяют следующим требованиям:
начало систем находится в центре масс всей Земли, включая океаны и атмосферу;
единицей длины является метр (SI), определенный в локальной земной системе в смысле релятивистской теории гравитации;
ориентировка осей задается по данным МБВ на эпоху 1984.0;
временная эволюция ориентировки осей такова, что она не имеет остаточной вращательной скорости в плоскости горизонта по отношению к земной коре.