
- •Раздел 1 «Основные принципы спутниковых измерений» 3
- •Раздел 2 Методы определения местоположения, измерений и вычислений в спутниковых системах 10
- •Раздел 3 Системы координат 32
- •Раздел 4 Проектирование и предварительная обработка измерений 72
- •Раздел 5 Обработка спутниковых наблюдений 72
- •Конспекты лекций
- •Предмет и задачи дисциплины спутниковая геодезия.
- •Раздел 1 «Основные принципы спутниковых измерений» Особенности геодезических измерений.
- •Принципы измерения в спутниковой геодезии Принципы измерения длин линий в спутниковой геодезии
- •Общие принципы построения глобальных систем позиционирования
- •Космический сектор
- •Сектор управления и контроля (кратко о функциях) Сектор потребителя
- •Раздел 2 Методы определения местоположения, измерений и вычислений в спутниковых системах Геометрическая сущность местоопределения.
- •Разновидности методов определения местоположения
- •Концептуальная основа дифференциальных и относительных методов определения местоположения
- •Разновидности методов измерений
- •Разновидности обработки измерений
- •Аналитические решения спутниковых наблюдений с использованием математической модели Обобщенная математическая модель задачи пространственного определения спутниковыми методами
- •Линеаризация функции геометрической дальности
- •Практикуемая математическая модель пространственной засечки
- •Методы определения местоположения с использованием математической модели Абсолютный метод (точечное позиционирование)
- •Позиционирование по кодовым псевдодальностям.
- •Позиционирование по фазе несущих колебаний.
- •Дифференциальный метод
- •Относительный метод
- •Задача разрешение неоднозначности
- •Системы дифференциального определения местоположения
- •Раздел 3 Системы координат
- •Системы координат
- •Небесные системы координат
- •Горизонтальная система координат
- •Первая экваториальная система координат
- •Вторая экваториальная система координат
- •Прямоугольные и геодезические общеземные системы координат.
- •Общеземная система координат.
- •Связь координат в общеземной и истинной небесной системе.
- •Взаимосвязь систем координат
- •Реализация общеземных систем координат.
- •Общеземной эллипсоид grs80
- •Геоцентрическая координатная система wgs-84.
- •Система координат пз-90
- •Референцные системы координат Система координат ск-95 и ск-42
- •Система координат 1963 г.
- •Правила установления местных систем координат
- •Общие сведения о единой координатной основы России
- •Развитие координатной основы России и ее современное состояние
- •Функции времени в спутниковых технологиях.
- •Время при связи земных и небесных систем отсчёта.
- •Интегралы орбитального движения
- •Элементы орбиты и законы Кеплера. Основные формулы невозмущённого движения.
- •Вычисление положения и скорости спутника по Кеплеровым элементам орбиты.
- •Раздел 4 Проектирование и предварительная обработка измерений
- •Раздел 5 Обработка спутниковых наблюдений
- •Задание: Определение координат дифференциальным методом gps
Раздел 3 Системы координат
-
Роль систем координат
-
Общие сведения (стр. 109 «Генике Побединский)
-
-
системы координат GPS и ГЛОНАСС
-
Орбитальная система, эфемериды спутника
-
Геодезические системы координат и их преобразование
-
Общеземная система координат
-
переход к общеземной системе координат
-
Геоцентрическая система ПЗ-90
-
Система СК-42
-
Система СК-95
-
Система WGs-84
-
-
-
-
Методы преобразования координат
-
Особенности определения высот методом спутниковых наблюдений
Системы координат
В курсе космической геодезии приводится классификация систем координат. Там же даны в основном представление небесных, орбитальных систем и систем счета времени.
Приведем некоторые сведения, связанные с этим вопросом.
Для решения многочисленных задач космической геодезии применяют различные системы координат, которые различаются: по форме их задания; по выбору начала координат; по выбору основной плоскости и по ориентации главной оси координат.
В связи с этим в космической геодезии существует следующая классификация координат:
Классификация систем координат.
Необходимость использования различных систем координат в спутниковой геодезии становится понятной, если учесть, что для вычисления орбит спутников, прогнозирования их движения используются одни системы координат, для определения координат пунктов в процессе наблюдения используются другие координаты, а для использования полученных координат при решении различных прикладных задач требуются совершенно иные системы. Кроме того, нужна соответствующая теория времени, поскольку решение задач спутниковой геодезии производится по наблюдениям объектов, часто движущихся с огромными скоростями.
Инерциальными системами координат называют системы, оси которых фиксированы в пространстве, либо изменяющие своё положение с течением времени по хорошо известным законам относительно других фиксированных осей. Свободная материальная точка в такой системе движется равномерно и прямолинейно. Эти системы лучше всего подходят для изучения движения искусственных спутников Земля (ИСЗ).
Системы координат, вращающиеся вместе с Землёй, называют земными.
Инерциальные системы, не участвующие в суточном вращении Земли называют небесными или звёздными.
Системы, начало которых совпадает с центром масс Земли, называют геоцентрическими.
Земные геоцентрические системы называют также общеземными или глобальными, мировыми референцными (опорными), или условными земными (условными – в смысле принятыми по соглашению).
Общеземные системы образуются с помощью методов космической геодезии:
-
По наблюдениям на радиоинтерферометрах со сверхдлинными базами.
-
Лазерной локацией спутников и Луны.
-
По навигационным спутникам.
Квазигеоцентрические, или локальные референцные – системы начало которых находится в центре референц-эллипсоида, наилучшим образом подходящего к территории страны или материка.
Локальные референцные системы образуются с помощью градусных измерений классической геодезии:
-
Триангуляции.
-
Трилатерации.
-
Полигонометрии.
-
Астрономических определений.
Топоцентрические – координаты с началом в точке наблюдений. Используются для наблюдений за спутниками относительно точек горизонта или относительно звёзд.
При рассмотрении некоторых вопросов космической геодезии применяются системы координат:
-
Гелиоцентрические – с началом в центре Солнца.
За основную координатную плоскость системы принимают плоскости земного или небесного экваторов, горизонта или орбиты ИСЗ, в связи с чем выделяют :
-
Экваториальные системы координат.
-
Горизонтальные системы координат.
-
Орбитальные системы координат.
Иногда используются:
-
Эклиптические системы координат.
-
Галактические системы координат.
Направление осей системы координат задаётся относительно некоторых точек небесной сферы или земной поверхности, а также фундаментальных векторов. К этим векторам относят вектор кинетического момента Земли, направление мгновенной оси её вращения, вектор направления силы тяжести, нормаль к орбите Земли (к эклиптике), вектор линии узлов земной орбиты (направление на точку весеннего равноденствия) и другие. Координаты, связанные с отвесной линией, называют астрономическими.
Вследствие того, что выбранные для ориентировки систем точки могут изменять своё положение, обязательно указывается эпоха – тот момент, к которому относятся направление осей. При построении систем координат, в которых учитываются релятивистские эффекты, вводят систему отсчёта и системы времени.
При проведении топографо-геодезических работ и навигации часто используются плоские координаты в различных картографических проекциях.
Помимо перечисленного выше, но и не претендуя на исчерпывающую классификацию, дополнительно можно классифицировать системы координат по следующим признакам:
1. По форме: прямоугольные и криволинейные (сферические, сфероидические)
2. По выбору начала координат: геоцентрические (в центре Земли) и топоцентрические (на поверхности Земли)
3. По выбору основной координатной плоскости: экваториальные, горизонтные, орбитальные.
4. По выбору направления оси ОХ: инерциальные (ось ОХ направлена в точку весеннего равноденствия γ)- неподвижные относительно вращающейся Земли. Гринвичские (референцные)- ось ОХ направлена в точку пересечения начального (гринвичского) меридиана и экватора. Системы вращаются вместе с Землей.
5. По положению оси ОZ и точку γ. Ось OZ совпадает с осью вращения Земли. Системы бывают: мгновенные, истинные и средние.
Исходной системой координат, в которой задаются положения станций наблюдений ИСЗ, является геодезическая, определяемая принятым на данной территории референц-эллипсоидом. Положение точек на земной поверхности задается: геодезической широтой В; геодезической долготой L; геодезической высотой Н над эллипсоидом.
Референц-эллипсоид ориентируют так, чтобы его малая ось была параллельна средней оси вращения Земли в некоторою стандартную эпоху to.
Так как космическая геодезия позволяет решать геодезические задачи в масштабе всей Земли, то иногда в качестве исходного целесообразно использовать общий Земной эллипсоид. Центр этого эллипсоила совпадает с центром масс Земли, а малая полуось совпадает со средней осью вращения Земли для выбранной эпохи to (1900, 1960, 1990, 2000 и т.д.).
Размеры общего земного эллипсоида: а=6378140км; α=1:298,257
( Красовского: а=6378245км; α=1:298,3).