Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мед псих 2.rtf
Скачиваний:
7
Добавлен:
19.07.2019
Размер:
526.01 Кб
Скачать

20)Раткая история

Факторный анализ впервые возник в психометрике и в настоящее время широко используется не только в психологии, но и в нейрофизиологии, социологии, политологии, в экономике, статистике и других науках. Основные идеи Факторного анализа были заложены английским психологом и антропологом, основателем евгеники Гальтоном Ф. (1822—1911), внесшим также большой вклад в исследование индивидуальных различий. Но в разработку Факторного анализа внесли вклад многие ученые. Разработкой и внедрением Факторного анализа в психологию занимались такие ученые как: Спирмен Ч. (1904, 1927, 1946), Терстоун Л. (1935, 1947, 1951) и Кеттел Р. (1946, 1947, 1951) Также нельзя не упомянуть английского математика и философа Пирсона К., в значительной степени развившего идеи Ф. Гальтона, американского математика Хотеллинга Г., разработавшего современный вариант метода главных компонент. Внимания заслуживает и английский психолог Айзенк Г., широко использовавший Факторный анализ для разработки психологической теории личности. Математически факторный анализ разрабатывался Хотеллингом, Харманом, Кайзером, Терстоуном, Такером и др. Сегодня факторный анализ включён во все пакеты статистической обработки данных — R, SAS, SPSS, Statistica и т. д.

[править] Задачи и условия факторного анализа

Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время компактно. С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.

Например, анализируя оценки, полученные по нескольким шкалам, исследователь замечает, что они сходны между собой и имеют высокий коэффициент корреляции, он может предположить, что существует некоторая латентная переменная, с помощью которой можно объяснить наблюдаемое сходство полученных оценок. Такую латентную переменную называют фактором. Данный фактор влияет на многочисленные показатели других переменных, что приводит нас к возможности и необходимости выделить его как наиболее общий, более высокого порядка.

Таким образом можно выделить 2 цели Факторного анализа:

определение взаимосвязей между переменными, их классификация, т. е. «объективная R-классификация»[1][2];

сокращение числа переменных.

Для выявления наиболее значимых факторов и, как следствие, факторной структуры, наиболее оправданно применять метод главных компонентов (МГК). Суть данного метода состоит в замене коррелированных компонентов некоррелированными факторами. Другой важной характеристикой метода является возможность ограничиться наиболее информативными главными компонентами и исключить остальные из анализа, что упрощает интерпретацию результатов. Достоинство МГК также в том, что он — единственный математически обоснованный метод факторного анализа[1][3].

Факторный анализ может быть 1) разведочным — он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках; и 2) конфирматорным, предназначенным для проверки гипотез о числе факторов и их нагрузках (примечание 2). Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:

Все признаки должны быть количественными.

Число признаков должно быть в два раза больше числа переменных.

Выборка должна быть однородна.

Исходные переменные должны быть распределены симметрично.

Факторный анализ осуществляется по коррелирующим переменным[3].

При анализе в один фактор объединяются сильно коррелирующие между собой переменные, как следствие происходит перераспределение дисперсии между компонентами и получается максимально простая и наглядная структура факторов. После объединения коррелированность компонент внутри каждого фактора между собой будет выше, чем их коррелированность с компонентами из других факторов. Эта процедура также позволяет выделить латентные переменные, что бывает особенно важно при анализе социальных представлений и ценностей.

[править] Процедура вращения. Выделение и интерпретация факторов

Сущностью факторного анализа является процедура вращения факторов, то есть перераспределения дисперсии по определённому методу. Вращение бывает ортогональным и косоугольным. При первом виде вращения каждый последующий фактор определяется так, чтобы максимизировать изменчивость, оставшуюся от предыдущих, поэтому факторы оказываются независимыми, некоррелированными друг от друга (к этому типу относится МГК). Второй вид — это преобразование, при котором факторы коррелируют друг с другом. Преимущество косоугольного вращения состоит в следующем: когда в результате его выполнения получаются ортогональные факторы, можно быть уверенным, что эта ортогональность действительно им свойственна, а не привнесена искусственно. Однако если цель ортогональных вращений — определение простой структуры факторных нагрузок, то целью большинства косоугольных вращений является определение простой структуры вторичных факторов, то есть косоугольное вращение следует использовать в частных случаях. Поэтому ортогональное вращение предпочтительнее. Существует около 13 методов вращения в обоих видах, в статистической программе SPSS 10 доступны пять: три ортогональных, один косоугольный и один комбинированный, однако из всех наиболее употребителен ортогональный метод «варимакс». Метод «варимакс» максимизирует разброс квадратов нагрузок для каждого фактора, что приводит к увеличению больших и уменьшению малых значений факторных нагрузок. В результате простая структура получается для каждого фактора в отдельности[1][3][2].

Главной проблемой факторного анализа является выделение и интерпретация главных факторов. При отборе компонент исследователь обычно сталкивается с существенными трудностями, так как не существует однозначного критерия выделения факторов, и потому здесь неизбежен субъективизм интерпретаций результатов. Существует несколько часто употребляемых критериев определения числа факторов. Некоторые из них являются альтернативными по отношению к другим, а часть этих критериев можно использовать вместе, чтобы один дополнял другой:

Критерий Кайзера или критерий собственных чисел. Этот критерий предложен Кайзером, и является, вероятно, наиболее широко используемым. Отбираются только факторы с собственными значениями равными или большими 1. Это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается[1].

Критерий каменистой осыпи или критерий отсеивания. Он является графическим методом, впервые предложенным психологом Кэттелом. Собственные значения возможно изобразить в виде простого графика. Кэттел предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» — «осыпь» является геологическим термином, обозначающим обломки горных пород, скапливающиеся в нижней части скалистого склона[1]. Однако этот критерий отличается высокой субъективностью и, в отличие от предыдущего критерия, статистически необоснован. Недостатки обоих критериев заключаются в том, что первый иногда сохраняет слишком много факторов, в то время как второй, напротив, может сохранить слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике возникает важный вопрос: когда полученное решение может быть содержательно интерпретировано. В этой связи предлагается использовать ещё несколько критериев.

Критерий значимости. Он особенно эффективен, когда модель генеральной совокупности известна и отсутствуют второстепенные факторы. Но критерий непригоден для поиска изменений в модели и реализуем только в факторном анализе по методу наименьших квадратов или максимального правдоподобия[1].

Критерий доли воспроизводимой дисперсии. Факторы ранжируются по доле детерминируемой дисперсии, когда процент дисперсии оказывается несущественным, выделение следует остановить[1]. Желательно, чтобы выделенные факторы объясняли более 80 % разброса. Недостатки критерия: во-первых, субъективность выделения, во-вторых, специфика данных может быть такова, что все главные факторы не смогут совокупно объяснить желательного процента разброса. Поэтому главные факторы должны вместе объяснять не меньше 50,1 % дисперсии.

Критерий интерпретируемости и инвариантности. Данный критерий сочетает статистическую точность с субъективными интересами. Согласно ему, главные факторы можно выделять до тех пор, пока будет возможна их ясная интерпретация. Она, в свою очередь, зависит от величины факторных нагрузок, то есть если в факторе есть хотя бы одна сильная нагрузка, он может быть интерпретирован. Возможен и обратный вариант — если сильные нагрузки имеются, однако интерпретация затруднительна, от этой компоненты предпочтительно отказаться[1][3].

Практика показывает, что если вращение не произвело существенных изменений в структуре факторного пространства, это свидетельствует о его устойчивости и стабильности данных. Возможны ещё два варианта: 1). сильное перераспределение дисперсии — результат выявления латентного фактора; 2). очень незначительное изменение (десятые, сотые или тысячные доли нагрузки) или его отсутствие вообще, при этом сильные корреляции может иметь только один фактор, — однофакторное распределение. Последнее возможно, например, когда на предмет наличия определённого свойства проверяются несколько социальных групп, однако искомое свойство есть только у одной из них.

Факторы имеют две характеристики: объём объясняемой дисперсии и нагрузки. Если рассматривать их с точки зрения геометрической аналогии, то касательно первой отметим, что фактор, лежащий вдоль оси ОХ, может максимально объяснять 70 % дисперсии (первый главный фактор), фактор, лежащий вдоль оси ОУ, способен детерминировать не более 30 % (второй главный фактор). То есть в идеальной ситуации вся дисперсия может быть объяснена двумя главными факторами с указанными долями[4]. В обычной ситуации может наблюдаться два или более главных факторов, а также остаётся часть неинтерпретируемой дисперсии (геометрические искажения), исключаемая из анализа по причине незначимости. Нагрузки, опять же с точки зрения геометрии, есть проекции от точек на оси ОХ и ОУ (при трёх- и более факторной структуре также на ось ОZ). Проекции — это коэффициенты корреляции, точки — наблюдения, таким образом, факторные нагрузки являются мерами связи. Так как сильной считается корреляция с коэффициентом Пирсона R ≥ 0,7, то в нагрузках нужно уделять внимание только сильным связям. Факторные нагрузки могут обладать свойством биполярности — наличием положительных и отрицательных показателей в одном факторе. Если биполярность присутствует, то показатели, входящие в состав фактора, дихотомичны и находятся в противоположных координатах[1].

Методы факторного анализа:

метод главных компонент

корреляционный анализ

метод максимального правдоподобия

21)Кластерный анализ – это совокупность методов, позволяющих классифицировать многомерные наблюдения. Термин кластерный анализ, впервые введенный Трионом (Tryon) в 1939 году, включает в себя более 100 различных алгоритмов.

В отличие от задач классификации, кластерный анализ не требует априорных предположений о наборе данных, не накладывает ограничения на представление исследуемых объектов, позволяет анализировать показатели различных типов данных (интервальным данным, частотам, бинарным данным). При этом необходимо помнить, что переменные должны измеряться в сравнимых шкалах.

Кластерный анализ позволяет сокращать размерность данных, делать ее наглядной.

задачи кластерного анализаПравить

Задачи кластерного анализа можно объединить в следующие группы:

1. Разработка типологии или классификации.

2. Исследование полезных концептуальных схем группирования объектов.

3. Представление гипотез на основе исследования данных.

4. Проверка гипотез или исследований для определения, действительно ли типы (группы), выделенные тем или иным способом, присутствуют в имеющихся данных.

Как правило, при практическом использовании кластерного анализа одновременно решается несколько из указанных задач.

схожесть кластеровПравить

Критерием для определения схожести и различия кластеров является расстояние между точками на диаграмме рассеивания. Это сходство можно "измерить", оно равно расстоянию между точками на графике. Способов определения меры расстояния между кластерами, называемой еще мерой близости, существует несколько. Наиболее распространенный способ - вычисление евклидова расстояния между двумя точками i и j на плоскости, когда известны их координаты X и Y:

D_{ij} = \sqrt{ (x_i - x_j)^2+ ( y_i - y_j )^2}

Примечание: чтобы узнать расстояние между двумя точками, надо взять разницу их координат по каждой оси, возвести ее в квадрат, сложить полученные значения для всех осей и извлечь квадратный корень из суммы.

Математические характеристики кластераПравить

Кластер имеет следующие математические характеристики:

Центр кластера - это среднее геометрическое место точек в пространстве переменных.

x_{kj} = \frac {\sum_{j=1}^n w_jx_{ij}}{I_k}

Дисперсия кластера - это мера рассеяния точек в пространстве относительно центра кластера:

D_k = \frac{\sum_{i=1}^{I_1} \sum_{j=1}^n w_j(x_{ij}-\overline x_{kj})^2}{I_k -1}

Среднеквадратичное отклонение (СКО) объектов относительно центра кластера:

S_k = \sqrt{D_k}

Радиус кластера - максимальное расстояние точек от центра кластера:

R_k = max \sqrt{\sum_{j=1}^n w_j(x_{ij}-\overline x_{kj})^2}

Спорный объект - это объект, который по мере сходства может быть отнесен к нескольким кластерам.

Размер кластера может быть определен либо по радиусу кластера, либо по среднеквадратичному отклонению объектов для этого кластера. Объект относится к кластеру, если расстояние от объекта до центра кластера меньше радиуса кластера. Если это условие выполняется для двух и более кластеров, объект является спорным.

Неоднозначность данной задачи может быть устранена экспертом или аналитиком.

Работа кластерного анализа опирается на два предположения: Первое предположение - рассматриваемые признаки объекта в принципе допускают желательное разбиение совокупности объектов на кластеры. Второе предположение - правильность выбора масштаба или единиц измерения признаков.

Методы кластерного анализаПравить

Методы кластерного анализа можно разделить на две группы:

• иерархические;

• неиерархические.

Каждая из групп включает множество подходов и алгоритмов.

Используя различные методы кластерного анализа, аналитик может получить различные решения для одних и тех же данных. Это считается нормальным явлением. Рассмотрим иерархические и неиерархические методы подробно.

Иерархические методы кластерного анализаПравить

Суть иерархической кластеризации состоит в последовательном объединении меньших кластеров в большие или разделении больших кластеров на меньшие.

Иерархические агломеративные методы (Agglomerative Nesting, AGNES) Эта группа методов характеризуется последовательным объединением исходных элементов и соответствующим уменьшением числа кластеров.

В начале работы алгоритма все объекты являются отдельными кластерами. На первом шаге наиболее похожие объекты объединяются в кластер. На последующих шагах объединение продолжается до тех пор, пока все объекты не будут составлять один кластер. Иерархические дивизимные (делимые) методы (DIvisive ANAlysis, DIANA) Эти методы являются логической противоположностью агломеративным методам. В начале работы алгоритма все объекты принадлежат одному кластеру, который на последующих шагах делится на меньшие кластеры, в результате образуется последовательность расщепляющих групп.

Программная реализация алгоритмов кластерного анализа широко представлена в различных инструментах Data Mining, которые позволяют решать задачи достаточно большой размерности. Например, агломеративные методы реализованы в пакете SPSS, дивизимные методы - в пакете Statgraf.

Иерархические методы кластеризации различаются правилами построения кластеров. В качестве правил выступают критерии, которые используются при решении вопроса о "схожести" объектов при их объединении в группу (агломеративные методы) либо разделения на группы (дивизимные методы).

Меры сходства кластеровПравить

Для вычисления расстояния между объектами используются различные меры сходства (меры подобия), называемые также метриками или функциями расстояний. Евклидово расстояние, это наиболее популярная мера сходства.

Квадрат евклидова расстояния. Для придания больших весов более отдаленным друг от друга объектам можем воспользоваться квадратом евклидова расстояния путем возведения в квадрат стандартного евклидова расстояния.

Манхэттенское расстояние (расстояние городских кварталов), также называемое "хэмминговым" или "сити-блок" расстоянием.

Это расстояние рассчитывается как среднее разностей по координатам. В большинстве случаев эта мера расстояния приводит к результатам, подобным расчетам расстояния евклида. Однако, для этой меры влияние отдельных выбросов меньше, чем при использовании евклидова расстояния, поскольку здесь координаты не возводятся в квадрат. Расстояние Чебышева. Это расстояние стоит использовать, когда необходимо определить два объекта как "различные", если они отличаются по какому-то одному измерению.

Процент несогласия. Это расстояние вычисляется, если данные являются категориальными.

Методы объединения или связиПравить

Когда каждый объект представляет собой отдельный кластер, расстояния между этими объектами определяются выбранной мерой. Возникает следующий вопрос - как определить расстояния между кластерами? Существуют различные правила, называемые методами объединения или связи для двух кластеров.

Метод ближнего соседа или одиночная связь.Править

Здесь расстояние между двумя кластерами определяется расстоянием между двумя наиболее близкими объектами (ближайшими соседями) в различных кластерах. Этот метод позволяет выделять кластеры сколь угодно сложной формы при условии, что различные части таких кластеров соединены цепочками близких друг к другу элементов. В результате работы этого метода кластеры представляются длинными "цепочками" или "волокнистыми" кластерами, "сцепленными вместе" только отдельными элементами, которые случайно оказались ближе остальных друг к другу.

Метод наиболее удаленных соседей или полная связь.Править

Здесь расстояния между кластерами определяются наибольшим расстоянием между любыми двумя объектами в различных кластерах (т.е. "наиболее удаленными соседями"). Метод хорошо использовать, когда объекты действительно происходят из различных "рощ". Если же кластеры имеют в некотором роде удлиненную форму или их естественный тип является "цепочечным", то этот метод не следует использовать.

Метод Варда (Ward's method).Править

В качестве расстояния между кластерами берется прирост суммы квадратов расстояний объектов до центров кластеров, получаемый в результате их объединения (Ward, 1963). В отличие от других методов кластерного анализа для оценки расстояний между кластерами, здесь используются методы дисперсионного анализа. На каждом шаге алгоритма объединяются такие два кластера, которые приводят к минимальному увеличению целевой функции, т.е. внутригрупповой суммы квадратов. Этот метод направлен на объединение близко расположенных кластеров и "стремится" создавать кластеры малого размера.

Метод невзвешенного попарного среднегоПравить

(метод невзвешенного попарного арифметического среднего - unweighted pair-group method using arithmetic averages, UPGMA (Sneath, Sokal, 1973)). В качестве расстояния между двумя кластерами берется среднее расстояние между всеми парами объектов в них. Этот метод следует использовать, если объекты действительно происходят из различных "рощ", в случаях присутствия кластеров "цепочного" типа, при предположении неравных размеров кластеров.

Метод взвешенного попарного среднегоПравить

(метод взвешенного попарного арифметического среднего - weighted pair-group method using arithmetic averages, WPGM A (Sneath, Sokal, 1973)). Этот метод похож на метод невзвешенного попарного среднего, разница состоит лишь в том, что здесь в качестве весового коэффициента используется размер кластера (число объектов, содержащихся в кластере). Этот метод рекомендуется использовать именно при наличии предположения о кластерах разных размеров. Невзвешенный центроидный метод (метод невзвешенного попарного центроидного усреднения - unweighted pair-group method using the centroid average (Sneath and Sokal, 1973)).

В качестве расстояния между двумя кластерами в этом методе берется расстояние между их центрами тяжести.

Взвешенный центроидный метод Править

метод взвешенного попарного центроидного усреднения -weighted pair-group method using the centroid average, WPGMC (Sneath, Sokal 1973)). Этот метод похож на предыдущий, разница состоит в том, что для учета разницы между размерами кластеров (числе объектов в них), используются веса. Этот метод предпочтительно использовать в случаях, если имеются предположения относительно существенных отличий в размерах кластеров.

Иерархический кластерный анализ в SPSSПравить

Рассмотрим процедуру иерархического кластерного анализа в пакете SPSS (SPSS). Процедура иерархического кластерного анализа в SPSS предусматривает группировку как объектов (строк матрицы данных), так и переменных (столбцов). Можно считать, что в последнем случае роль объектов играют переменные, а роль переменных - столбцы. В этом методе реализуется иерархический агломеративный алгоритм, смысл которого заключается в следующем. Перед началом кластеризации все объекты считаются отдельными кластерами, в ходе алгоритма они объединяются. Вначале выбирается пара ближайших кластеров, которые объединяются в один кластер. В результате количество кластеров становится равным N-1. Процедура повторяется, пока все классы не объединятся. На любом этапе объединение можно прервать, получив нужное число кластеров. Таким образом, результат работы алгоритма агрегирования зависит от способов вычисления расстояния между объектами и определения близости между кластерами. Для определения расстояния между парой кластеров могут быть сформулированы различные подходы. С учетом этого в SPSS предусмотрены следующие методы:

• Среднее расстояние между кластерами (Between-groups linkage), устанавливается по умолчанию.

• Среднее расстояние между всеми объектами пары кластеров с учетом расстояний внутри кластеров (Within-groups linkage).

• Расстояние между ближайшими соседями - ближайшими объектами кластеров (Nearest neighbor).

• Расстояние между самыми далекими соседями (Furthest neighbor).

• Расстояние между центрами кластеров (Centroid clustering) или центроидный метод. Недостатком этого метода является то, что центр объединенного кластера вычисляется как среднее центров объединяемых кластеров, без учета их объема.

• Метод медиан - тот же центроидный метод, но центр объединенного кластера вычисляется как среднее всех объектов (Median clustering).

• Метод Варда.

Определение количества кластеровПравить

Существует проблема определения числа кластеров. Иногда можно априорно определить это число. Однако в большинстве случаев число кластеров определяется в процессе агломерации/разделения множества объектов. Процессу группировки объектов в иерархическом кластерном анализе соответствует постепенное возрастание коэффициента, называемого критерием Е. Скачкообразное увеличение значения критерия Е можно определить как характеристику числа кластеров, которые действительно существуют в исследуемом наборе данных. Таким образом, этот способ сводится к определению скачкообразного увеличения некоторого коэффициента, который характеризует переход от сильно связанного к слабо связанному состоянию объектов.

22)Многомерное шкалирование начало свое интенсивное развитие в 60-х годах в работах американских ученых Торгерсона (Torgerson) [9], Шепарда (Shepard) [8], Краскэла (Kruskal) [6]. Круг советских специалистов, занимающихся этой проблемой, достаточно узок, и основные их усилия направлены на разработку формализованных методов и вычислительных процедур, реализующих известные модели на ЭВМ. К настоящему времени методы многомерного шкалирования, к сожалению, не получили широкого применения в психометрических исследованиях в нашей стране. Видимо, причинами тому являются малочисленность группы специалистов и отсутствие хороших пакетов программ.

Развитие многомерного шкалирования идет в направлении все большей его формализации. При этом остаются в тени некоторые содержательные вопросы, обсуждение которых могло бы привлечь внимание большого количества пользователей и способствовало бы расширению области применения этих методов. Не уделяется достаточно внимания изучению свойств моделей многомерного шкалирования. Отсутствуют публикации (в доступных американских источниках в том числе), в которых бы анализировался сам механизм шкалирования и рассматривался вопрос о том, каким образом методы многомерного шкалирования позволяют выделить факторы, принимаемые во внимание человеком при сравнении стимулов. Эти вопросы связаны самым непосредственным образом с проблемой содержательной интерпретации формально построенного решения.

В данной работе предпринимается попытка объяснения геометрических свойств моделей многомерного шкалирования и демонстрируются возможности использования их для анализа субъективного восприятия.

Задача многомерного шкалирования и пути ее решения

Задача многомерного шкалирования в самом общем виде состоит в том, чтобы выявить структуру исследуемого множества стимулов. Под выявлением структуры понимается выделение набора основных факторов, по которым различаются стимулы, и описание каждого из стимулов в терминах этих факторов. Процедура построения структуры опирается на анализ объективной или субъективной информации о близостях между стимулами либо информации о предпочтениях на множестве стимулов. В случае анализа субъективных данных решаются одновременно две задачи. С одной стороны, выявляется объективная структура субъективных данных, с другой — определяются факторы, влияющие на процесс принятия решения.

Методы многомерного шкалирования могут использовать разные типы данных: данные о предпочтениях субъекта на множестве стимулов, данные о доминировании, о близостях между стимулами, данные о профилях и т. п. Как правило, с каждым типом данных принято соотносить определенную группу методов их обработки. Однако такое соотнесение не должно быть слишком жестким, поскольку часто не представляет особого труда перейти от одного типа данных к другому. Так, например, данные о профилях можно легко преобразовать в данные о близостях, для этого необходимо только воспользоваться подходящей метрикой. Данные о предпочтениях содержат в себе информацию о доминировании. С другой стороны, подсчитав корреляции между столбцами матрицы предпочтений, получим матрицу близостей между стимулами, а корреляции между строками той же матрицы дадут нам матрицу близостей между субъектами. В настоящей работе будет обсуждаться только анализ близостей.

В основе многомерного шкалирования лежит идея геометрического представления стимульного множества. Предположим, что нам задано координатное пространство, каждая ось которого соответствует одному из искомых факторов. Каждый стимул представляется точкой в этом пространстве, величины проекций этих точек на оси соответствуют значениям или степеням факторов, характеризующих данный стимул. Чем больше величина проекций, тем большим значением фактора обладает стимул. Мера сходства между двумя стимулами обратна расстоянию между соответствующими им точками. Чем ближе стимулы друг к другу, тем выше мера сходства между ними (и ниже мера различия), далеким точкам соответствует низкая мера сходства. Чтобы точным образом измерить близости, необходимо ввести метрику в искомом координатном пространстве; выбор этой метрики оказывает большое влияние на результат решения.

Обычно используется метрика Минковского:

где r — размерность пространства, djk — расстояние между точками, соответствующими j-му и k-му стимулам, Xjt, Xkt — величины проекций j-й и k-й точек на t-ю ось. Наиболее распространенными ее случаями являются: евклидова метрика (р=2):

и метрика «city-block» (р=1)

В некоторых случаях пользуются метрикой доминирования (р стремится к бесконечности):

Использование равномерных метрик предполагает, что при оценке сходств (различий) субъект в одинаковой мере учитывает все факторы. Когда же имеется основание утверждать, что факторы неравноценны для индивида и он учитывает их в разной степени, прибегают к взвешенной метрике, где каждому фактору приписывается определенный вес. Разные индивиды могут принимать во внимание разные факторы. Тогда каждый индивид характеризуется своим собственным набором весов Wti. Взвешенная метрика Минковского имеет вид:

Такая модель называется «индивидуальным шкалированием» или «моделью взвешенных факторов» [2, 12, 13]. Геометрически она интерпретируется следующим образом. Пусть в координатном пространстве имеется конфигурация точек, отражающая восприятие некоторого «среднего индивида» в группе. Для того чтобы получить пространство восприятия i-го субъекта, необходимо растянуть «среднюю конфигурацию» в направлении тех осей, для которых Wti > Wtср, и сжать в направлении осей, для которых Wti < Wtср. Например, если в пространстве двух факторов для «среднего индивида» все стимулы лежат на окружности, то для индивида, характеризующегося весами W1i=2, W2i=1, эти стимулы будут располагаться на эллипсе, вытянутом вдоль горизонтальной оси, а для индивида, характеризующегося весами W2i=2, W1i=1, на эллипсе, вытянутом вдоль вертикальной оси.

Схема многомерного шкалирования включает ряд последовательных этапов. На первом этапе необходимо получить экспериментальным способом субъективные оценки различий. Процедура опроса и вид оценок должны выбираться исследователем в зависимости от конкретной ситуации. В результате такого опроса должна быть сконструирована субъективная матрица попарных различий между стимулами, которая будет служить входной информацией для следующего этапа.

На втором этапе решается задача построения координатного пространства и размещения в нем точек-стимулов таким образом, чтобы расстояния между ними, определяемые по введенной метрике, наилучшим образом соответствовали исходным различиям между стимулами. Для решения этой формальной задачи не требуется никаких сведений о самих стимулах, достаточно располагать только матрицей попарных различий между ними. Для построения искомого координатного пространства используется достаточно разработанный аппарат линейной или нелинейной оптимизации. Вводится критерий качества отображения, называемый «стрессом» и измеряющий степень расхождення между исходными различиями Djk и результирующими расстояниями djk. Ищется такая конфигурация точек, которая давала бы минимальное значение этому «стрессу». Значения координат этих точек и являются решением задачи.

Используя эти координаты, мы строим геометрическое представление стимулов в пространстве невысокого числа измерений. Оно должно быть в достаточной степени адекватно исходным данным. Стимулы, которым в исходной матрице соответствуют большие меры различий, должны находиться далеко друг от друга, а стимулы, которым соответствуют малые меры различий, — близко. Формальным критерием адекватности может служить коэффициент корреляции, он должен быть достаточно высоким. Средство повышения точности формального решения состоит в увеличении числа измерений, т. е. размерности пространства r. Чем выше размерность пространства, тем больше возможностей получить более точное решение.

Геометрическое представление стимулов в пространстве невысокого числа измерений является результатом, имеющим самостоятельное значение. Оно даст возможность наглядного представления данных, удобного для визуального анализа, и направления его использования далеко выходят за рамки психометрических исследований.

На третьем этапе решается содержательная задача интерпретации формального результата, полученного на предыдущей стадии. Координатные оси построенного стимульного пространства должны получить смысловое содержание, они должны быть проинтерпретированы как факторы, определяющие расхождения между стимулами. Эта работа является достаточно сложной и может быть выполнена только специалистом, хорошо знакомым с исследуемым материалом. Если на предыдущем этапе достаточно было только информации о попарных различиях между стимулами, то для содержательной интерпретации необходимо тщательное изучение их характеристик.

Геометрические свойства модели многомерного шкалирования и вопросы интерпретируемости решения

Многомерное шкалирование предлагает геометрическое представление стимулов в виде точек координатного пространства минимально возможной размерности.

Существует два типа моделей: дистанционные и векторные. В дистанционных моделях исходные различия должны быть приближены расстояниями, в большинстве случаев используют привычное евклидово расстояние:

В векторных моделях меры близостей или связей — величины, обратные различиям, аппроксимируются скалярными произведениями векторов, соединяющих точки, соответствующие стимулам, с началом координат:

При построении конфигурации стимулов используется аппарат линейной или нелинейной оптимизации. Почему же такая простая модель и формальные методы поиска экстремума позволяют получить содержательно интерпретируемое решение? Почему оси, построенные формальным образом, приобретают смысл хорошо интерпретируемых факторов?

Векторная модель. Обсудим геометрические свойства векторной модели. Начнем со шкалирования бинарных данных, т. е. высказываний типа «похожи — непохожи». Допустим, что мы имеем матрицу, содержащую информацию о том, что все стимулы не похожи друг на друга. Как можно представить геометрически такую структуру? Стимулы должны располагаться либо на ортогональных прямых, либо в начале координат. В этом случае все скалярные произведения будут нулями.

Перейдем к ситуации наличия нескольких групп похожих между собой стимулов. Стимулы из одной группы должны представляться одной точкой; точки, соответствующие разным группам, должны принадлежать ортогональным прямым. Изолированные стимулы могут быть помещены в начало координат. Тогда скалярные произведения между похожими стимулами будут большими, а скалярные произведения между непохожими стимулами будут нулями.

Ориентируем оси координатного пространства вдоль ортогональных направлений. Тогда каждая ось будет связана с группой похожих между собой стимулов, и фактор, ей соответствующий, будет лежать в основе сходства этих стимулов. Разным группам будут соответствовать ортогональные осп и, следовательно, независимые факторы. Исключение составляют изолированные стимулы, которые могут попасть в начало координат. Чем больше стимулов объединяются в группы, тем меньше измерений необходимо.

Пусть теперь мы располагаем дискретными или непрерывными данными, т. с. получаем оценки о сходствах или связях либо в виде баллов, либо в виде чисел. Допустим, что в этом случае матрица имеет квазиблочпую структуру. Тогда по ней можно разбить все множество на несколько групп так, что стимулы внутри каждой группы будут сильно связаны, а стимулы из разных групп — слабо связаны между собой. Характер отображения будет примерно таким же, как в случае непересекающихся бинарных данных. Однако стимулы из одной группы не будут представляться одной точкой, а будут сконцентрированы в некоторой ее окрестности. Такая структура, вообще говоря, не будет совпадать с ортогональной системой координат, поскольку точки могут лежать несколько в стороне от осей. Однако если связи в группах достаточно сильны, а связи между группами достаточно слабы, то и в этом случае каждое измерение будет связано с одной группой и фактор, ему соответствующий, будет лежать в основе сходства стимулов из этой группы.

На практике сильно структуризованные данные, характеризующие непересекающиеся группы стимулов, встречаются редко, обычно группы имеют пересечения. Имеются стимулы, похожие одновременно на стимулы из двух или нескольких групп. Естественно, что они не попадут на оси, а будут располагаться в пространстве между ними. Характер распределения будет зависеть от матрицы исходных данных. Картина будет тем контрастнее, чем более структуризованы данные, т. е. сильнее внутригрупповые связи и слабее — межгрупповые. Оси будут определяться группами стимулов, которые очень похожи между собой и минимально похожи на стимулы из других групп. Такие стимулы характеризуются большими значениями координат по соответствующим осям. Эти группы стимулов лежат в основе всей структуры. Остальные стимулы, похожие одновременно на стимулы из нескольких групп, должны занять промежуточные положения между этими группами.

Поскольку исходная матрица не является матрицей точных расстояний или скалярных произведений, то все стимулы не могут быть отображены в пространстве, определяемом ортогональными осями, соответствующими изолированным группам. Для их размещения потребуются дополнительные размерности. Если первый тип размерностей определяется большими межгрупповыми различиями и каждая размерность характеризуется значительным разбросом стимулов, то второй тип размерностей возникает за счет того, что субъективные различия между стимулами не могут быть отображены точным образом в пространстве небольшого числа размерностей. Разброс стимулов вдоль размерностей второго типа невелик и во многих случаях им можно пренебречь.

Центрированная векторная модель. Другой вариант векторной модели — модель центрированных скалярных произведений. На ней основан широко распространенный метод Торгерсона, положивший начало теории многомерного шкалирования. В этой модели полагается, что начало координат помещено в центре тяжести структуры. Исходные близости или связи должны быть аппроксимированы скалярными произведениями векторов, соединяющих точки, соответствующие стимулам, с центром тяжести конфигурации. Матрица исходных близостей предварительно центрируется, так что наряду с положительными числами в ней появляются и отрицательные. Если пронормировать приведенные данные: |ajk|Ј1, то их можно рассматривать как коэффициенты корреляции.

Решение, порождаемое моделью центрированных скалярных произведений, отличается от решения, получаемого по обычной векторной модели. В исходной матрице близости (связи) между стимулами могут принимать положительное, нулевое и отрицательное значения; будем приближать их скалярными произведениями. Естественно, что стимулы, характеризующиеся сильными положительными связями (большими мерами близостей), должны концентрироваться в окрестности одной точки, отстоящей на значительном расстоянии от начала координат. Тогда скалярные произведения между соответствующими векторами будут большими. Стимулы, характеризующиеся отрицательными связями, должны находиться по разные стороны от начала координат. Скалярные произведения между ними будут принимать максимальные отрицательные значения, если они будут принадлежать разным концам одной прямой, проходящей через начало координат. Пары стимулов с нулевыми связями должны принадлежать ортогональным прямым; в таком случае скалярные произведения между ними будут нулями. Изолированные стимулы, имеющие нулевые связи со всеми остальными, могут попадать в начало координат.

Большие положительные, отрицательные, а также нулевые связи будут определять основную структуру всей системы. Стимулы, характеризующиеся умеренными связями, будут располагаться между этими основными группами стимулов. Чем слабее связи, тем ближе стимулы к началу координат. Поскольку исходная матрица близостей или связей не является точной матрицей скалярных произведений, то все стимулы не могут быть отображены в пространстве небольшой размерности. Как и в случае предыдущей модели, для компенсации шума в данных потребуются дополнительные размерности, разброс в направлении которых незначителен по сравнению с основными размерностями и им можно пренебречь. Таким образом, модель центрированных скалярных произведений позволяет отобразить структуру системы в координатном пространстве, натянутом на небольшое множество ортогональных прямых. Повернем первоначальные оси пространства и совместим их с этими прямыми. Тогда каждую ось можно интерпретировать как биполярный фактор: справа будут располагаться стимулы, характеризующиеся положительными значениями этого фактора, слева — отрицательными, а в центре — нулевыми. Ортогональные оси будут соответствовать стимулам или группам стимулов, не связанных между собой, поэтому они могут интерпретироваться как независимые факторы. Решение, порождаемое моделью, будет иметь смысловое содержание.

Дистанционная модель. Посмотрим теперь, какими свойствами обладает дистанционная модель; ограничимся евклидовой метрикой. Начнем опять с системы, в которой все стимулы не похожи друг на друга. Для точной передачи структуры этой системы следует поместить каждый стимул в одну из N вершин многогранника с одинаковыми ребрами (симплекса). Тогда стимулы будут отстоять друг от друга на одинаковом расстоянии.

Пусть имеется несколько изолированных групп- стимулов. Тогда стимулы из одной группы должны быть помещены в одну вершину, и многогранник будет иметь размерность, равную количеству групп. В отличие от векторной модели изолированные стимулы не могут быть все помещены в одну точку — начало координат, каждый из них должен занимать отдельную вершину.

В общем случае произвольной матрицы различий группы похожих между собой стимулов будут сконцентрированы вблизи одной вершины, а стимулы, похожие одновременно на стимулы из двух или нескольких групп, будут располагаться между этими вершинами.

Характер конструкции будет определяться в основном большими различиями между стимулами или группами стимулов. Однако, как и в случае векторной модели, ввиду того, что матрица различий не является точной матрицей расстояний, для передачи структуры потребуются дополнительные размерности. Но разброс стимулов в этих направлениях будет сравнительно мал.

В результате шкалирования необходимо выявить существенные оси, разброс в направлении которых велик, и отбросить несущественные оси, разброс в направлении которых мал. Итак, следуя модели многомерного шкалирования, можно разместить все стимулы в пространстве таким образом, чтобы оси несли смысловую нагрузку и факторы, им соответствующие, лежали в основе сходств или различий между стимулами.

Построенная результирующая конфигурация и полученные размерности отражают данные, занесенные в матрицу близостей или различий. И хотя многомерное шкалирование при своем зарождении было предназначено для анализа высказываний человека, никакой специфики обработки субъективных данных в нем не содержится. Оно в равной мере может использоваться и для анализа объективных данных о близостях или связях. Более того, иногда легче поддаются интерпретации объективные данные, потому что они характеризуют некие объективные связи между объектами. Интерпретация субъективных данных, построенных на основе высказываний одного человека (эксперта, испытуемого), может вызвать значительные затруднения у другого человека (исследователя, экспериментатора).

После анализа механизма шкалирования легко понять, какие же данные следует считать хорошими или, как принято говорить, хорошо структуризованными. Для кластерного анализа хорошо структуризованной является матрица, которая может быть приведена к блочно-диагональному виду. Иными словами, если имеется группа похожих (или сильно связанных) между собой стимулов, то все стимулы этой группы должны быть непохожими на остальные (или слабо связаны). Тогда структура может быть представлена изолированными группами сходных между собой стимулов. В многомерном шкалировании ввиду непрерывности измерений требования на входную информацию более слабые. Если два стимула сходны между собой, то они должны иметь близкие профили сходств со всеми другими стимулами. Это является необходимым условием для их адекватного представления в пространстве небольшого числа измерений.

Хотя модель многомерного шкалирования достаточно проста и интуитивно понятно, какого характера решение следует ожидать, попытки построить конфигурацию точек вручную могут привести к успеху лишь при очень небольшом количестве стимулов и хорошо структуризованной матрице близостей. В общем случае исследователь вынужден прибегнуть к помощи вычислительной машины, а для работы на ней необходимо алгоритмизировать процесс решения задачи. Иногда трудно вручную построить конфигурацию даже для небольшого набора стимулов. Примером такого множества могут служить равнояркие цветовые стимулы, равномерно распределенные по длине волны. Анализ матрицы субъективных различий не позволяет выделить ключевые стимулы, различия между которыми могли бы быть положены в основу всей структуры. Обработка этих данных на ЭВМ приводит к представлению стимулов на окружности — «цветовом круге»; действительно, с точки зрения такой структуры все стимулы равноценны.

Основные подходы к шкалированию

Известны три подхода к шкалированию: линейный, нелинейный и неметрический. Линейный подход, предложенный Торгерсоном [9], основан на ортогональном проектировании в подпространство, образованное направлениями, характеризующимися значительным разбросом точек. Такое решение дает maxеd2jk при ортогональном проектировании.

В нелинейном случае [1, 7, 11] пытаются найти отображение D ® d, которое бы минимально искажало исходные различия Djk. Вводится критерий качества отображения, называемый «стрессом» и измеряющий степень расхождения между исходными различиями Djk и результирующими расстояниями djk. С помощью аппарата нелинейной оптимизации ищется конфигурация точек, которая давала бы минимальное значение «стрессу». Значения координат этих точек и являются решением задачи. В качестве «стресса» используются разные виды функционалов, в простейшем случае

Нелинейный подход, как правило, приводит к пространству меньшей размерности, чем линейный. В линейном случае допускаются искажения лишь в сторону уменьшения различий. В нелинейном — возможны искажения как в ту, так и в другую сторону. Предпосылки получения отображения в пространстве невысокой размерности можно создать, если допустить возможность некоторого увеличения больших расстояний и уменьшения маленьких.

Неметрический (или монотонный) подход в своей последней модификации [4, 6] основан на следующем соображении. Поскольку исходная матрица различий не является точной матрицей расстояний в каком-либо метрическом пространстве, то не следует стремиться аппроксимировать непосредственно эти различия. Нужно подобрать такую последовательность чисел, которая была бы монотонна с исходными различиями, но была бы более близка к точным расстояниям. Эту последовательность чисел уже можно использовать в качестве эталонной. Однако не известен способ построения такой последовательности с учетом лишь первоначальных различий. Предлагается многоэтапная процедура, использующая начальную конфигурацию точек. На первом этапе подбирается числовая последовательность {}, монотонная с исходными различиями и минимально отклоняющаяся от расстояний начальной конфигурации. Затем ищется новая конфигурация, расстояния которой в наилучшей мере аппроксимируют числовую последовательность {}. На втором этапе опять подбирают новую последовательность {} и конфигурацию изменяют так, чтобы ее расстояния приближали эту последовательность, и т. д. Таким образом, в качестве критерия, измеряющего качество отображения, используется функционал вида

Нормирующий множитель 1/еd2jk вводится для того, чтобы на качество решения не влиял масштаб конфигурации.

Известен еще один подход к шкалированию [5], сохраняющий монотонность отображения и не опирающийся на какую-либо числовую последовательность. Он основан на минимизации критерия

Где

Передвижение точек конфигурации направлено на усиление монотонности отображения, т. е. удовлетворение требования dij Ј dkl, если Dij Ј Dkl.

Нелинейный и неметрический подходы имеют преимущество перед линейным. Не ограничиваясь ортогональным проектированием, они позволяют получить хорошее отображение в пространстве меньшего числа измерений. Если размерность пространства оценена правильно, то после вращения координатные оси могут быть интерпретированы как факторы, лежащие в основе субъективных различий между стимулами. Если же размерность недооценена, то решение допускает интерпретацию только в терминах кластеров.

Нелинейные и неметрические методы опираются, как правило, на дистанционную модель: различия между стимулами приближаются расстояниями между соответствующими им точками. Для поиска решения они используют градиентные процедуры минимизации функционала. В большинстве случаев расстояния между точками вычисляются по евклидовой метрике, которая не чувствительна к вращению осей и переносу начала координат. Качество решения не зависит от направления системы координат, по этой причине формально полученные оси не могут нести смысловую нагрузку — для содержательной интерпретации они должны быть ориентированы соответствующим образом.

В основу линейного метода Торгерсона положена центрированная векторная модель: близости между стимулами должны быть аппроксимированы скалярными произведениями векторов, соединяющих точки-стимулы с центром тяжести структуры. Решение ищется путем факторизации матрицы исходных близостей (или связей); вычисляются ее собственные значения и собственные векторы. Такая процедура обусловливает жесткую ориентацию осей: первая ось характеризуется максимальным разбросом точек вдоль нее, вторая — ортогональна первой и определяется следующим по величине разбросом, третья — ортогональна плоскости первых двух и т. д. В тех практических ситуациях, когда существует фактор, по которому стимулы различаются больше, чем по всем остальным, первая ось будет соответствовать этому фактору. В таком случае формально полученные оси будут иметь смысловое содержание. Если же с точки зрения вклада в различия между стимулами все факторы или несколько из них равноценны, то для интерпретируемости осей необходимо произвести их поворот.

Анализ субъективного восприятия

Многомерное шкалирование по своему происхождению является областью математической психологии и первая его задача — это анализ субъективного восприятия. Методы многомерного шкалирования можно использовать для построения модели поведения человека при вынесении суждений о сходстве между различными стимулами. Процесс оценки субъектом сходств между стимулами может быть представлен в виде традиционного «черного ящика», на вход которого подается информация о стимулах, а на выходе получают субъективные высказывания о сходствах. Задача состоит в том, чтобы описать этот «черный ящик». Под моделью понимается система правил, руководствуясь которой, можно генерировать те же результаты о сходствах, какие были высказаны субъектом для анализируемого набора стимулов.

В основе модели лежит предположение о том, что при сравнении стимулов человек (явным или неявным образом) сопоставляет их характеристики. Чем сильнее расхождение стимулов по этим характеристикам, тем выше субъективная мера различия между ними. Следовательно, задача сводится к тому, чтобы для исследуемого множества стимулов 1) выявить набор основных факторов, их характеризующих, 2) описать каждый стимул с помощью этих факторов и 3) сконструировать функцию, позволяющую определить меру различия между стимулами на основе известных значений по факторам.

Четвертый заключительный этап включает процедуру построения модели принятия решений о сходствах, использующую параметризацию стимулов с помощью выделенных факторов и их геометрическое представление в пространстве этих факторов. Нужно описать «черный ящик», т. е. в терминах расстояний между стимулами сформулировать правило, следуя которому можно получить те же меры сходств, которые получены от субъекта в ходе эксперимента. Необходимо также оценить степень адекватности модели субъективным данным. Для большей наглядности результата кроме коэффициента корреляции можно использовать также корреляционное поле. Чем большее количество факторов принимается во внимание при построении модели, тем, конечно, она лучше приближает исходные данные. Наша цель, однако, ограничиться минимальным набором факторов, достаточным для построения модели, адекватной анализируемым субъективным сходствам (различиям).

Многомерное шкалирование предоставляет формальный способ построения модели, основывающийся только на результирующих высказываниях субъекта. Такой способ может использоваться, когда человек опирается на свою интуицию и не может описать процесс принятия решения. Заметим, что мы будем строить «апостериорную» модель. Это означает, что мы можем начать работу только после того, как получим от субъекта информацию о сходствах, и попытаемся объяснить, какими мотивами он руководствовался при вынесении своих суждений. Поэтому, строго говоря, наша модель будет верна только для набора стимулов, участвующих в эксперименте. Но если предъявляемая выборка окажется достаточно представительной, то построенная модель будет обладать прогностической силой и по ней можно будет предсказывать, какие решения будет принимать субъект, если в эксперимент будут включены другие стимулы, подобные анализируемым.

Зрительное восприятие букв русского алфавита

Пятидесяти субъектам предъявлялись попарно восемнадцать букв русского алфавита, и они оценивали близость в каждой паре в терминах «похожи—непохожи». В результате [3] были получены пятьдесят матриц сходств, которые затем были обработаны методом многомерного шкалирования. Анализ конфигурации, приведенной на рис. 1, позволяет, во-первых, выделить группы букв, сходных с точки зрения субъектов, и, во-вторых, выявить два фактора, которыми руководствовались субъекты при вынесении суждений о сходствах. Легко различить три «чистых» группы букв, состоящих из остроугольных элементов (К, У, М. Л, А, И), из прямоугольных элементов (И, П, Д, Т, Г, Е), из круглых элементов (О, С), и одну «смешанную», состоящую из букв, включающих элементы двух типов—прямые и круглые (Б, В, Р), и расположенную между группой букв из круглых элементов и группой букв из прямоугольных элементов. Промежуточное положение заняла буква 3, она расположилась между группой круглых и группой комбинированных букв, в частности из последних ближе всего к В. Буква Е заняла в группе прямых крайнюю позицию, примыкая к комбинированным Б и В.

Что касается факторов, то один из них оказалось возможным интерпретировать как наличие только прямых элементов—наличие только круглых элементов; в середине расположились буквы, состоящие из прямых и круглых элементов одновременно. Второй фактор интерпретируется как наличие остроугольных элементов — наличие прямоугольных элементов.

Анализ весовых коэффициентов приводит к следующим выводам. Во-первых, субъекты различаются по тому, какой вес придают они каждому из факторов. Так, одна часть субъектов придала большой вес горизонтальной оси, другая — вертикальной. При этом для разных субъектов степень различия весов неодинакова. Значительная их часть группируется вдоль диагонали, для этих субъектов различие между весами несущественно. В то же время для субъекта № 47 веса различаются очень сильно — горизонтальной оси он приписывает значительно больший вес, чем вертикальной. Для субъекта № 41 это различие также очень велико, но для него первый весовой коэффициент значительно меньше второго. Таким образом, в то время как субъект № 47 при оценке сходства между буквами руководствуется в основном наличием или отсутствием в них остроугольных элементов, субъект № 41 преимущественно учитывает только наличие или отсутствие круглых элементов.

Кроме различия по соотношению двух весов между субъектами имеется различие по их величине. Непосредственный анализ исходных матриц показывает, что субъектам, которые при сравнении пар букв обоим факторам придавали малые веса, соответствует большое число ответов «похожи», а субъектам, которые придавали обоим факторам большие веса, соответствует наибольшее количество ответов «непохожи».

Естественность построенной модели проиллюстрируем на следующем примере. Рассмотрим несколько букв, не участвовавших в эксперименте, например буквы Ж, X, Ш, Я. Очевидно, Ж и Х нужно отнести к классу остроугольных букв, Ш — к классу букв с прямыми углами. Буква Я не может быть отнесена ни к одному из полученных классов, но ее положение в пространстве двух признаков может быть четко определено. По первому фактору она занимает место на уровне букв, содержащих одновременно прямые и круглые элементы (таких, как Р, В), а по второму — на уровне букв с острыми углами (К, У). Так, букву Я можно охарактеризовать как состоящую одновременно из круглых и прямых элементов и содержащую острые углы. Таким образом, по нашей модели можно предсказать результаты будущих экспериментов, не проводя их.

Слуховое восприятие болгарских согласных

В НРБ в Институте обучения иностранных студентов болгарскому языку проводились исследования различий восприятия болгарских звуков между болгарами и иностранными студентами [10]. Были выбраны четыре группы испытуемых по 50 человек: болгар, испанцев, вьетнамцев и арабов. Пары из 21 согласного звука в сочетании со звуком Ъ (БЪ—ВЪ) были записаны на магнитную пленку—всего 210 пар. Испытуемые должны были внимательно слушать и отмечать, похожи ли два звука в паре. В результате для каждого испытуемого была получена матрица сходств.

Совместный анализ этих данных позволил построить шестимерное стимульное пространство. 1-я ось (рис. 2) делит все согласные на сибилянты

Рис. 2. Анализ слухового восприятия.

Пространство стимулов плоскость, образованная 1-й и 2-й осями

Рис. 3. Анализ слухового восприятия.

Пространство стимулов плоскость, образованная 3- и 4-й осями

(Ч, Ш, Ж, ДЖ, Ц, С, 3, ДЗ) и остальные. 2-я ось разделяет сибилянты по частоте: высокочастотные — свистящие (3, С, Ц, ДЗ) и низкочастотные — шипящие (Ч, Ш, Ж, ДЖ). 3-я ось (рис. 3) выделяет из всех согласных группу сонорных (М, Н, Л, Р); 4-я соответствует месту образования звуков: от губных к заднеязычным. Первый уровень составляют губные звуки (П, Б, В, Ф, Т), второй — зубные (Ц, Ч, С, Л, 3, Ж, ДЖ, Н, ДЗ), третий — переднеязычные (Т, Д) и четвертый — заднеязычные (К, Г). 5-я ось выделяет дрожащий звук Р. Интересной является 6-я ось, она соответствует признаку «глухость — звонкость», но «количество звонкости» определяется как бы в относительной степени; противопоставление «глухости — звонкости» реализуется на всех согласных, но попарно: С лежит дальше от начала координат, чем 3; Ш — дальше, чем Ж; Ч — дальше, чем ДЖ, и т. д. То же самое справедливо для пар Т—Д, П—Б, К—Г, Ф—В.

Все испытуемые, и особенно группа испанцев, при сравнении звуков наибольшее значение придают признаку «сибилянтность». Для испанцев характерны также большие веса для признака «сонорность». Наиболее низкие веса у арабов, они в наименьшей степени учитывают признаки «свистящие — шипящие», «сонорные — несонорные», «глухие — звонкие». Болгары в меньшей степени, чем все остальные, учитывают признак «переднеязычные — заднеязычные», но при сравнении в большей степени опираются на признак «глухие — звонкие». По-видимому, различие в восприятии звуковых стимулов разными группами испытуемых — носителей разных языков — объясняется различием фонетических систем, на которые опираются их родные языки.

23)4. Математическое моделирование

В настоящее время все более широкое применение в психологических исследованиях получает построение математических моделей. Достаточно сказать, что уже в

1965 г. в США было издано фундаментальное трехтомное "Руководство по математической психологии" [92], в котором значительное внимание уделено именно проблеме моделирования. Число работ в этой области достигает сейчас внушительных размеров.

Несомненно, использование математического моделирования в психологии имеет большое значение для ее развития. Как уже отмечалось, использование математических методов в психологии осуществляется в разных формах: при статистической обработке результатов наблюдений; при отыскании уравнений, которые описывают соотношение между переменными, изучаемыми в эксперименте, и, наконец, при создании и испытании математических моделей.

Вторая из указанных форм является как бы итогом обработки результатов эксперимента. Однако часто бывает так, что полученная таких образом эмпирическая зависимость выдается за математическую модель исследуемого психологического явления. Это, конечно, неточно Если статистические методы используются нами для подытоживания данных эксперимента и проверки статистических гипотез, то математическая модель относится к более абстрактному уровню анализа. Модель превосходит описательную систему тем, что она может служить инструментом для предсказания до сих пор не наблюдавшихся событий, и в этом, пожалуй, ее главная ценность.

Моделирование в самой общей форме [56] может быть охарактеризовано как опосредствованное теоретическое и эмпирическое исследование объекта, при котором изучается не сам объект, а некоторая вспомогательная искусственная или естественная система: а) находящаяся в некотором объективном соответствии с познаваемым объектом, отражающая определенные его свойства; б) способная замещать объект в определенных отношениях; в) дающая при ее исследовании информацию о самом моделируемом объекте.

В математических моделях такой вспомогательной системой часто служат знаковые модели, которые построены с помощью логико-математического языка и функционируют по законам этого языка. Часто знаковые модели используются в качестве программ для вычислительных машин, решающих ту или иную исследовательскую задачу.

Математические модели применяются для исследования широкого круга психических процессов: восприятия, решения задач, обучения и др. [3, 4, 5, 10, 14, 25, 36, 39, 51, 54, 55, 59, 61, 66, 68, 90]. При этом круг вопросов быстро расширяется и в ряде областей имеются обнадеживающие результаты (При построении моделей используются различные математические аппараты: теория вероятностей, теория информации, теория алгоритмов, теория конечных автоматов и т. д).

Можно ожидать, что использование методов математического моделирования в психологии позволит более четко и однозначно определить процессы восприятия, памяти, мышления, творчества, игры, обучения и т. д.

Однако здесь следует указать не неразрешенность основного методологического вопроса - вопроса о соотношении объекта и модели в психологии. Что, собственно, может быть здесь моделируемым объектом? Специфика психических явлений состоит в том, что они представляют собой различные формы субъективного отражения предметов и явлений объективной действительности: основная функция психического - регуляция поведения и деятельности.

Сама природа психики такова, что в процессе ее исследования мы сталкиваемся с необходимостью рассмотрения разнопорядковых отношений. При этом выявляются отношения отражения к отражаемому (психическое рассматривается как образ), отношение отражения к его носителю (психическое рассматривается как функция мозга), отношение отражения к поведению (психическое рассматривается как регулятор поведения). Все эти отношения реализуются в едином процессе (психическое рассматривается как процесс), динамика которого зависит от конкретных условий его протекания.

Важно также подчеркнуть, что психическое не представляет собой замкнутой системы, существующей изолированно от других систем материального мира (физической, брюлогической, социальной). Все это создает, конечно, большие трудности на пути применения методов математического моделирования.

Когда речь идет о математических моделях в психологии, нужно иметь в виду, что в таких моделях берется лишь какой-то один определенный аспект рассмотрения тех явлений, процессов и т. д., которые изучаются психологией. Моделей, которые охватывают всю систему психических явлений, пока нет, да и вряд ли они появятся в ближайшем будущем. Впрочем, любая модель берет лишь какой-то аспект моделируемых явлений, не претендуя на их исчерпывающее отображение.

В психологии более всего разрабатываются математические модели поведения, частично - процессов общения и деятельности; разрабатываются также модели нейрофизиологических основ психики (например, модели функциональных систем).

Наибольшие трудности возникают при попытках моделирования самого процесса психического отражения, в особенности отношения субъективного образа к объекту. Трудным пунктом здесь является вопрос о том, в какой мере модель психического отражения (например, перцептивного образа) должна учитывать свойства отражаемого объекта. Когда речь заходит о модели образа, то здесь возможна подмена модели образа моделью его объекта. Иногда самый психический образ рассматривается как модель объекта. Одни авторы [11, 15 и др.] считают правомерным, анализируя процесс психического отражения, устанавливать отношения соответствия (в частности, гомоморфизма, изоморфизма, изофункционализма и т. д.) между образом и отображенным в нем объектом. Другие [13, 35] считают, что логико-математические отношения соответствия (изоморфизма и т. п.) могут служить некоторой частной основой моделирования в области физики, в математических и технических пауках, но не в психологии.

Вопрос этот до сих пор остается предметом острых дискуссий. В ходе этих дискуссий отмечается необходимость разработки математических средств в самой психологии, для психологии и при помощи психологии [6, 49, 83, 84 и др.]. Вряд ли против необходимости разработки специального математического аппарата для психологии можно возражать.

Однако, к сожалению, пути разработки такого аппарата пока еще не ясны. И вряд ли их поиски могут вестись вне и помимо использования существующего математического аппарата.

История науки показывает, что ничто из накопленного, проверенного на опыте не отменяется с появлением более мощных методов. Новые, более мощные методы вырастают на основе уже разработанных путем создания новых обобщающих концепций. В связи с этим задача заключается не в том, чтобы отрицать возможность применять существующие методы, а, напротив, в том, чтобы еще более широко и решительно, но и вместе с тем адекватно использовать существующий потенциал математики. Только тогда, в процессе такого настойчивого применения будут вскрыты действительные, а не мнимые ограничения математических теорий, и только в этих попытках возможно рождение открытий в области математики, которые позволят ей решать задачи, выдвигаемые психологией.

Иногда высказываются сомнения в возможности воспроизведения какой-либо из сторон психической деятельности в информационно-логических машинах. Как аргумент выдвигается положение о том, что психические процессы - идеальные, а машинные - материальные.

Однако признание материальности мира исключает мысль о существовании каких-либо явлений и процессов вне материи. Говорить об идеальности (в смысле "нематериалыюсти") можно лишь в гносеологическом плане. Нельзя, конечно, отрицать, что материя имеет ряд свойств, которые при их искусственном выделении и абстрактном рассмотрении могут быть в известной степени противопоставлены широко распространенному пониманию термина "материальный". Одним из таких свойств является свойство материи содержать информацию (т. е. быть определенным образом организованной). Психические явления реализуются в материальных процессах (системно-мозговых, поведенческих). В определенном плане они могут рассматриваться как информационные процессы. Именно этот план и открывает возможности их моделирования.

Несовершенство существующих технических и математических методов моделирования не должно смущать. Внимательному взору в электронной вычислительной технике открываются аналогии (пока еще очень грубые и несовершенные) тем операциям, которые выполняет человек в процессе переработки информации. Главным содержанием функционирования электронной вычислительной машины является оперирование кодами обрабатываемой информации в соответствии с определенной программой. Поэтому вопрос о возможности моделирования тех или иных сторон, например, мыслительной деятельности человека - это вопрос о возможности разработки программ, основанных на понимании закономерностей этой деятельности.

Если удастся создать такую программу, то это еще не означает превращения процессов, протекающих в машине в мыслительную деятельность в подлинном значении этого слова, т. е. превращения машины в мыслящую. Программа может служить лишь моделью (в каком-то определенном отношении) реального процесса. Но такая модель может многое дать для понимания того, что в ней моделируется.