Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мед псих 2.rtf
Скачиваний:
6
Добавлен:
19.07.2019
Размер:
526.01 Кб
Скачать

17)Общее назначение множественной регрессии (этот термин был впервые использован в работе Пирсона - Pearson, 1908) состоит в анализе связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами) и зависимой переменной. Например, агент по продаже недвижимости мог бы вносить в каждый элемент реестра размер дома (в квадратных футах), число спален, средний доход населения в этом районе в соответствии с данными переписи и субъективную оценку привлекательности дома. Как только эта информация собрана для различных домов, было бы интересно посмотреть, связаны ли и каким образом эти характеристики дома с ценой, по которой он был продан. Например, могло бы оказаться, что число спальных комнат является лучшим предсказывающим фактором (предиктором) для цены продажи дома в некотором специфическом районе, чем "привлекательность" дома (субъективная оценка). Могли бы также обнаружиться и "выбросы", т.е. дома, которые могли бы быть проданы дороже, учитывая их расположение и характеристики.

Специалисты по кадрам обычно используют процедуры множественной регрессии для определения вознаграждения адекватного выполненной работе. Можно определить некоторое количество факторов или параметров, таких, как "размер ответственности" (Resp) или "число подчиненных" (No_Super), которые, как ожидается, оказывают влияние на стоимость работы. Кадровый аналитик затем проводит исследование размеров окладов (Salary) среди сравнимых компаний на рынке, записывая размер жалования и соответствующие характеристики (т.е. значения параметров) по различным позициям. Эта информация может быть использована при анализе с помощью множественной регрессии для построения регрессионного уравнения в следующем виде:

Salary = .5*Resp + .8*No_Super

Как только эта так называемая линия регрессии определена, аналитик оказывается в состоянии построить график ожидаемой (предсказанной) оплаты труда и реальных обязательств компании по выплате жалования. Таким образом, аналитик может определить, какие позиции недооценены (лежат ниже линии регрессии), какие оплачиваются слишком высоко (лежат выше линии регрессии), а какие оплачены адекватно.

В общественных и естественных науках процедуры множественной регрессии чрезвычайно широко используются в исследованиях. В общем, множественная регрессия позволяет исследователю задать вопрос (и, вероятно, получить ответ) о том, "что является лучшим предиктором для...". Например, исследователь в области образования мог бы пожелать узнать, какие факторы являются лучшими предикторами успешной учебы в средней школе. А психолога мог быть заинтересовать вопрос, какие индивидуальные качества позволяют лучше предсказать степень социальной адаптации индивида. Социологи, вероятно, хотели бы найти те социальные индикаторы, которые лучше других предсказывают результат адаптации новой иммигрантской группы и степень ее слияния с обществом. Заметим, что термин "множественная" указывает на наличие нескольких предикторов или регрессоров, которые используются в модели

Метод наименьших квадратов. На диаграмме рассеяния имеется независимая переменная или переменная X и зависимая переменная Y. Эти переменные могут, например, представлять коэффициент IQ (уровень интеллекта, оцененный с помощью теста) и достижения в учебе (средний балл успеваемости - grade point average; GPA) соответственно. Каждая точка на диаграмме представляет данные одного студента, т.е. его соответствующие показатели IQ и GPA. Целью процедур линейной регрессии является подгонка прямой линии по точкам. А именно, программа строит линию регрессии так, чтобы минимизировать квадраты отклонений этой линии от наблюдаемых точек. Поэтому на эту общую процедуру иногда ссылаются как на оценивание по методу наименьших квадратов. (см. также описание оценивания по методу взвешенных наименьших квадратов).

Уравнение регрессии. Прямая линия на плоскости (в пространстве двух измерений) задается уравнением Y=a+b*X; более подробно: переменная Y может быть выражена через константу (a) и угловой коэффициент (b), умноженный на переменную X. Константу иногда называют также свободным членом, а угловой коэффициент - регрессионным или B-коэффициентом. Например, значение GPA можно лучше всего предсказать по формуле 1+.02*IQ. Таким образом, зная, что коэффициент IQ у студента равен 130, вы могли бы предсказать его показатель успеваемости GPA, скорее всего, он близок к 3.6 (поскольку 1+.02*130=3.6)

В многомерном случае, когда имеется более одной независимой переменной, линия регрессии не может быть отображена в двумерном пространстве, однако она также может быть легко оценена. Например, если в дополнение к IQ вы имеете другие предикторы успеваемости (например, Мотивация, Самодисциплина), вы можете построить линейное уравнение, содержащее все эти переменные. Тогда, в общем случае, процедуры множественной регрессии будут оценивать параметры линейного уравнения вида:

Y = a + b1*X1 + b2*X2 + ... + bp*Xp

Однозначный прогноз и частная корреляция. Регрессионные коэффициенты (или B-коэффициенты) представляют независимые вклады каждой независимой переменной в предсказание зависимой переменной. Другими словами, переменная X1, к примеру, коррелирует с переменной Y после учета влияния всех других независимых переменных. Этот тип корреляции упоминается также под названием частной корреляции (этот термин был впервые использован в работе Yule, 1907). Вероятно, следующий пример пояснит это понятие. Кто-то мог бы, вероятно, обнаружить значимую отрицательную корреляцию в популяции между длиной волос и ростом (невысокие люди обладают более длинными волосами). На первый взгляд это может показаться странным; однако, если добавить переменную Пол в уравнение множественной регрессии, эта корреляция, скорее всего, исчезнет. Это произойдет из-за того, что женщины, в среднем, имеют более длинные волосы, чем мужчины; при этом они также в среднем ниже мужчин. Таким образом, после удаления разницы по полу посредством ввода предиктора Пол в уравнение, связь между длиной волос и ростом исчезает, поскольку длина волос не дает какого-либо самостоятельного вклада в предсказание роста помимо того, который она разделяет с переменной Пол. Другими словами, после учета переменной Пол частная корреляция между длиной волос и ростом нулевая. Иными словами, если одна величина коррелирована с другой, то это может быть отражением того факта, что они обе коррелированы с третьей величиной или с совокупностью величин.

Предсказанные значения и остатки. Линия регрессии выражает наилучшее предсказание зависимой переменной (Y) по независимым переменным (X). Однако, природа редко (если вообще когда-нибудь) бывает полностью предсказуемой и обычно имеется существенный разброс наблюдаемых точек относительно подогнанной прямой (как это было показано ранее на диаграмме рассеяния). Отклонение отдельной точки от линии регрессии (от предсказанного значения) называется остатком.

Остаточная дисперсия и коэффициент детерминации R-квадрат. Чем меньше разброс значений остатков около линии регрессии по отношению к общему разбросу значений, тем, очевидно, лучше прогноз. Например, если связь между переменными X и Y отсутствует, то отношение остаточной изменчивости переменной Y к исходной дисперсии равно 1.0. Если X и Y жестко связаны, то остаточная изменчивость отсутствует, и отношение дисперсий будет равно 0.0. В большинстве случаев отношение будет лежать где-то между этими экстремальными значениями, т.е. между 0.0 и 1.0. 1.0 минус это отношение называется R-квадратом или коэффициентом детерминации. Это значение непосредственно интерпретируется следующим образом. Если имеется R-квадрат равный 0.4, то изменчивость значений переменной Y около линии регрессии составляет 1-0.4 от исходной дисперсии; другими словами, 40% от исходной изменчивости могут быть объяснены, а 60% остаточной изменчивости остаются необъясненными. В идеале желательно иметь объяснение если не для всей, то хотя бы для большей части исходной изменчивости. Значение R-квадрата является индикатором степени подгонки модели к данным (значение R-квадрата близкое к 1.0 показывает, что модель объясняет почти всю изменчивость соответствующих переменных).

Интерпретация коэффициента множественной корреляции R.

Обычно, степень зависимости двух или более предикторов (независимых переменных или переменных X) с зависимой переменной (Y) выражается с помощью коэффициента множественной корреляции R. По определению он равен корню квадратному из коэффициента детерминации. Это неотрицательная величина, принимающая значения между 0 и 1. Для интерпретации направления связи между переменными смотрят на знаки (плюс или минус) регрессионных коэффициентов или B-коэффициентов. Если B-коэффициент положителен, то связь этой переменной с зависимой переменной положительна (например, чем больше IQ, тем выше средний показатель успеваемости оценки); если B-коэффициент отрицателен, то и связь носит отрицательный характер (например, чем меньше число учащихся в классе, тем выше средние оценки по тестам). Конечно, если B-коэффициент равен 0, связь между переменными отсутствует.

18)F -- критерий Фишера

Критерий Фишера позволяет сравнивать величины выборочных дисперсий двух рядов наблюдений. Для вычисления $F_{{э}{м}{п}}$ нужно найти отношение дисперсий двух выборок, причем так, чтобы большая по величине дисперсия находилась бы в числителе, а меньшая знаменателе. Формула вычисления по критерию Фишера F такова: $F_{эмп} = \frac{S_x^2 }{S_y^2 }$

Где ${S}_{x}^{2} = \left( {\frac{1}{n1}} \right)\times \sum {\left( {x_i - \overline x } \right)} ^2$

и $S_y^2 = \left( {\frac{1}{n2}} \right)\times \sum {\left( {y_i - \overline y } \right)} ^2$

Поскольку, согласно условию критерия, величина числителя должна быть больше или равна величине знаменателя, то значение $F_{эмп}$ всегда будет больше или равно единице, т.е. $F_{эмп} \ge 1$. Число степеней свободы определяется также просто: $df_{2} = n2 - 1$ для первой (т.е. для той выборки, величина дисперсии которой больше) и $df_{2} = n2 - 1$ для второй выборки. В таблице 18 Приложения 6 критические значения критерия Фишера $F_{{кр}} $ находятся по величинам $df_{1}$ (верхняя строчка таблицы) и $df_{2}$ (левый столбец таблицы).

Пример: В двух третьих классах проводилось тестирование умственного развития по тесту ТУРМШ десяти учащихся. Полученные значения величин средних достоверно не различались, однако психолога интересует вопрос - есть ли различия в степени однородности показателей умственного развития между классами.

Для критерия Фишера необходимо сравнить дисперсии тестовых оценок в обоих классах. Результаты тестирования представлены в табл. 11.

Таблица 11

№ учащихся Первый класс X Второй класс Y

1 90 41

2 29 49

3 39 56

4 79 64

5 88 72

6 53 65

7 34 63

8 40 87

9 75 77

10 79 62

Суммы 606 636

Среднее 60,6 63,6

Как видно из табл. 11, величины средних в обеих группах практически совпадают между собой 60,6 $ \approx $ 63, 6 и величина t - критерия Стьюдента оказалась равной 0, 347 и незначимой.

Рассчитав дисперсии для переменных X и Y, получаем

\begin{displaymath} S_x^2 = 527,83 \end{displaymath}

\begin{displaymath} S_y^2 = 174,04 \end{displaymath}

Тогда, по формуле для расчета по F - критерию Фишера находим:

$F_{эмп} = \frac{527,83}{174,04} = 3,29$

По табл. 18 приложения 6 для F - критерия при степенях свободы в обоих случаях равных df$_{ }$ = 10 - 1 = 9 находим $F_{{кр}} $:

3,18 для P $ \le $ 0,05

5,35 для P $ \le $ 0,01

Строим ``ось значимости'':

\includegraphics{D:/html/work/link1/metod/met125/r30.eps}

Таким образом, полученная величина $F_{эмп}$ попала в зону неопределенности. В терминах статистических гипотез можно утверждать, что Н$_{{о}}$ (гипотеза о сходстве) может быть отвергнута на уровне 5%, а принимается в этом случае гипотеза Н$_{1}$. Психолог может утверждать, что по степени однородности такого показателя, как умственное развитие, имеется различие между выборками из двух классов.

Для применения критерия F Фишера необходимо соблюдать следующие условия:

1. Измерение может быть проведено в шкале интервалов и отношений.

2. Сравниваемые выборки должны быть распределены по нормальному закону.

19)ДИСПЕРСИОННЫЙ АНАЛИЗ

В практической деятельности врачей при проведении медико-биологических, социологических и экспериментальных исследований возникает необходимость установить влияние факторов на результаты изучения состояния здоровья населения, при оценке профессиональной деятельности, эффективности нововведений.

Существует ряд статистических методов, позволяющих определить силу, направление, закономерности влияния факторов на результат в генеральной или выборочной совокупностях (расчет критерия I, корреляционный анализ, регрессия, Χ2 — (критерий согласия Пирсона и др.). Дисперсионный анализ был разработан и предложен английским ученым, математиком и генетиком Рональдом Фишером в 20-х годах XX века.

Дисперсионный анализ чаще используют в научно-практических исследованиях общественного здоровья и здравоохранения для изучения влияния одного или нескольких факторов на результативный признак. Он основан на принципе "отражения разнообразий значений факторного(ых) на разнообразии значений результативного признака" и устанавливает силу влияния фактора(ов) в выборочных совокупностях.

Сущность метода дисперсионного анализа заключается в измерении отдельных дисперсий (общая, факториальная, остаточная), и дальнейшем определении силы (доли) влияния изучаемых факторов (оценки роли каждого из факторов, либо их совместного влияния) на результативный(е) признак(и).

Дисперсионный анализ — это статистический метод оценки связи между факторными и результативным признаками в различных группах, отобранный случайным образом, основанный на определении различий (разнообразия) значений признаков. В основе дисперсионного анализа лежит анализ отклонений всех единиц исследуемой совокупности от среднего арифметического. В качестве меры отклонений берется дисперсия (В)— средний квадрат отклонений. Отклонения, вызываемые воздействием факторного признака (фактора) сравниваются с величиной отклонений, вызываемых случайными обстоятельствами. Если отклонения, вызываемые факторным признаком, более существенны, чем случайные отклонения, то считается, что фактор оказывает существенное влияние на результативный признак.

Для того, чтобы вычислить дисперсию значения отклонений каждой варианты (каждого зарегистрированного числового значения признака) от среднего арифметического возводят в квадрат. Тем самым избавляются от отрицательных знаков. Затем эти отклонения (разности) суммируют и делят на число наблюдений, т.е. усредняют отклонения. Таким образом, получают значения дисперсий.

Важным методическим значением для применения дисперсионного анализа является правильное формирование выборки. В зависимости от поставленной цели и задач выборочные группы могут формироваться случайным образом независимо друг от друга (контрольная и экспериментальная группы для изучения некоторого показателя, например, влияние высокого артериального давления на развитие инсульта). Такие выборки называются независимыми.

Нередко результаты воздействия факторов исследуются у одной и той же выборочной группы (например, у одних и тех же пациентов) до и после воздействия (лечение, профилактика, реабилитационные мероприятия), такие выборки называются зависимыми.

Дисперсионный анализ, в котором проверяется влияние одного фактора, называется однофакторным (одномерный анализ). При изучении влияния более чем одного фактора используют многофакторный дисперсионный анализ (многомерный анализ).

Факторные признаки — это те признаки, которые влияют на изучаемое явление.

Результативные признаки — это те признаки, которые изменяются под влиянием факторных признаков.

Для проведения дисперсионного анализа могут использоваться как качественные (пол, профессия), так и количественные признаки (число инъекций, больных в палате, число койко-дней).

Методы дисперсионного анализа:

Метод по Фишеру (Fisher) — критерий F (значения F см. в приложении N 1);

Метод применяется в однофакторном дисперсионном анализе, когда совокупная дисперсия всех наблюдаемых значений раскладывается на дисперсию внутри отдельных групп и дисперсию между группами.

Метод "общей линейной модели".

В его основе лежит корреляционный или регрессионный анализ, применяемый в многофакторном анализе.

Обычно в медико-биологических исследованиях используются только однофакторные, максимум двухфакторные дисперсионные комплексы. Многофакторные комплексы можно исследовать, последовательно анализируя одно- или двухфакторные комплексы, выделяемые из всей наблюдаемой совокупности.

Условия применения дисперсионного анализа:

Задачей исследования является определение силы влияния одного (до 3) факторов на результат или определение силы совместного влияния различных факторов (пол и возраст, физическая активность и питание и т.д.).

Изучаемые факторы должны быть независимые (несвязанные) между собой. Например, нельзя изучать совместное влияние стажа работы и возраста, роста и веса детей и т.д. на заболеваемость населения.

Подбор групп для исследования проводится рандомизированно (случайный отбор). Организация дисперсионного комплекса с выполнением принципа случайности отбора вариантов называется рандомизацией (перев. с англ. — random), т.е. выбранные наугад.

Можно применять как количественные, так и качественные (атрибутивные) признаки.

При проведении однофакторного дисперсионного анализа рекомендуется (необходимое условие применения):

Нормальность распределения анализируемых групп или соответствие выборочных групп генеральным совокупностям с нормальным распределением.

Независимость (не связанность) распределения наблюдений в группах.

Наличие частоты (повторность) наблюдений.

Нормальность распределения определяется кривой Гаусса (Де Мавура), которую можно описать функцией у = f(х), так как она относится к числу законов распределения, используемых для приближенного описания явлений, которые носят случайный, вероятностный характер. Предмет медико-биологических исследований — явления вероятностного характера, нормальное распределение в таких исследованиях встречается весьма часто.

Принцип применения метода дисперсионного анализа

Сначала формулируется нулевая гипотеза, то есть предполагается, что исследуемые факторы не оказывают никакого влияния на значения результативного признака и полученные различия случайны.

Затем определяем, какова вероятность получить наблюдаемые (или более сильные) различия при условии справедливости нулевой гипотезы.

Если эта вероятность мала*, то мы отвергаем нулевую гипотезу и заключаем, что результаты исследования статистически значимы. Это еще не означает, что доказано действие именно изучаемых факторов (это вопрос, прежде всего, планирования исследования), но все же маловероятно, что результат обусловлен случайностью.

__________________________________

* Максимальную приемлемую вероятность отвергнуть верную нулевую гипотезу называют уровнем значимости и обозначают α = 0,05.

При выполнении всех условий применения дисперсионного анализа, разложение общей дисперсии математически выглядит следующим образом:

Doбщ. = Dфакт + D ост.,

Doбщ. - общая дисперсия наблюдаемых значений (вариант), характеризуется разбросом вариант от общего среднего. Измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Общее разнообразие складывается из межгруппового и внутригруппового;

Dфакт - факторная (межгрупповая) дисперсия, характеризуется различием средних в каждой группе и зависит от влияния исследуемого фактора, по которому дифференцируется каждая группа. Например, в группах различных по этиологическому фактору клинического течения пневмонии средний уровень проведенного койко-дня неодинаков — наблюдается межгрупповое разнообразие.

D ост. - остаточная (внутригрупповая) дисперсия, которая характеризует рассеяние вариант внутри групп. Отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неуточненных факторов и не зависящую от признака — фактора, положенного в основание группировки. Вариация изучаемого признака зависит от силы влияния каких-то неучтенных случайных факторов, как от организованных (заданных исследователем), так и от случайных (неизвестных) факторов.

Поэтому общая вариация (дисперсия) слагается из вариации, вызванной организованными (заданными) факторами, называемыми факториальной вариацией и неорганизованными факторами, т.е. остаточной вариацией (случайной, неизвестной).

Классический дисперсионный анализ проводится по следующим этапам:

Построение дисперсионного комплекса.

Вычисление средних квадратов отклонений.

Вычисление дисперсии.

Сравнение факторной и остаточной дисперсий.

Оценка результатов с помощью теоретических значений распределения Фишера-Снедекора (приложение N 1).

АЛГОРИТМ ПРОВЕДЕНИЯ ДИСПЕРСИОННОГО АНАЛИЗА ПО УПРОЩЕННОМУ ВАРИАНТУ

Алгоритм проведения дисперсионного анализа по упрощенному способу позволяет получить те же результаты, но расчеты выполняются значительно проще: